Service Cutter

A Structured Way to Service Decomposition

MICHAEL GYSEL & Lukas KOLBENER

BACHELOR THESIS

University of Applied Sciences of Eastern Switzerland (HSR FHO)
Department of COMPUTER SCIENCE

in Rapperswil

Advised by Prof. Dr. Olaf Zimmermann
Co-Examined Internally by Prof. Dr. Andreas Rinkel
Co-Examined Externally by Dr. Gerald Reif
Supported by Ziihlke Engineering AG
December 2015 (v1.0.1)

Declaration

We hereby declare

e that this bachelor thesis and the work presented in it is our own, original work.

o that all sources we consulted and cited are clearly attributed. We have acknowl-
edged all main sources of help.
e that no copyright secured material has been used by unfair means.

Rapperswil, December 18, 2015

Lukas Koélbener Michael Gysel

Contents

Declaration
Abstract
1 Management Summary

2 Introduction

2.1 Hypothesis e
2.2 Project Scope e
2.3 Context and Influences L o
2.4 Market Overview e

3 Domain Analysis
3.1 Service Definition oo

3.2 Service Decomposition

4 Decomposition Model

4.1 Catalog Overview e
4.2 Coupling Criteria Cards
4.3 Decomposition Questionnaire

5 Service Cutter Requirements

5.1 Personas e
5.2 Functional Requirements,
5.3 Non-Functional Requirements

10
10
13

15
15
17
26

Contents

6 Service Cutter Design and Implementation 33
6.1 Overview L e 33
6.2 User Representations 36
6.3 Decomposition by Graph Clustering 38
6.4 Clustering Algorithms 40
6.5 Scoring e 43
6.6 Prototype 52

7 Discussion 60
7.1 Usage Scenarios v v v vt i e e e e e 60
7.2 Benefits 61
7.3 Requirements Assessment 61

8 Conclusion 64
8.1 Hypothesis Evaluation o 64
8.2 Summary and Outlook L 65

9 Future Work 66
9.1 Algorithms and Approach 66
9.2 Service Cutter Improvements 67
9.3 Toolchain Integration. 69
9.4 Scoring e 69
9.5 Conceptual Refinements oo 70

A Decomposition Approach Evaluation 72
A.1 Graph Clustering Problems 72
A.2 Approach #2: Rating of Possible Service Cuts 76
A.3 Approach #3: Greedy Service Construction 78
A4 Conclusion 80

B Service Cutter Assessment 81
B.1 Trading System 82
B.2 Cargo Tracking System - Domain-Driven Design Sample 90
B.3 Conclusion e 100

Contents iv

C Graph Clustering Evaluation 101
C.1 Requirements o i e 101
C.2 Algorithms Assessment 102

D Implementation Details 104
D.1 Docker Compose e 104
D.2 JSON Schema Export 105
D.3 Performance 106

E Project Definition 107
E.1 Context e e 107
E.2 Goals and Deliverables 107

Glossary 109

References 111
Literature e 111

Online Sources 113

Abstract

Decomposing a software system into smaller parts has been an important challenge
in the software industry for many years. With the rise of distributed systems, it has
become even more important to split a system into loosely coupled and highly cohesive
parts. The architectural style Service Oriented Architecture (SOA) and the currently
trending microservices tackle many challenges of such systems, but remain vague on
how to decompose a system into services.

We propose a structured approach to service decomposition by providing a comprehen-
sive catalog of 16 coupling criteria. We abstracted them from existing literature, the
experience of our industry partner and our thesis advisor.

These coupling criteria are the basis of the Service Cutter tool, a prototype that extracts
coupling information out of well-established software engineering artifacts such as do-
main models and use cases. Using this information, the Service Cutter suggests service
cuts to assist an architect’s decomposition decisions.

We developed a scoring system that transforms the coupling data into an undirected,
weighted graph. On this graph, we employ two graph clustering algorithms from the
literature to find densely connected clusters as service candidates. This approach ensures
that the Service Cutter produces service cuts that minimize coupling between services
while promoting high cohesion within a service.

In our tests, we successfully decomposed two sample applications. Most scenarios resulted
in applicable service cuts while others were inadequate. These results suggest that our
structured and automated way to assist service decomposition decisions is a promising
approach. The thesis lays the foundation for further research in this area.

1. Management Summary

Context

A major challenge of writing software has always been to keep created source code
maintainable. Early in the history of software development, modules have been used to
structure code in manageable pieces and to make it reusable. With the rise of distributed
systems, engineers started to implement services communicating with each other over a
network. Coupling between such services has gained relevance as aspects like consistency
or release cycles have become more challenging.

Several methodologies exist to guide a software architect when he or she designs ser-
vices. “Service Oriented Architecture” is especially common in enterprise environments,
microservices became popular in recent years. Leaving technical differences aside, all ap-
proaches share a common challenge: How can a big collection of data and functionality
be decomposed into smaller pieces while retaining high cohesion and low coupling.

A Structured Approach to Service Decomposition

We found no extensive description of architecturally significant requirements in existing
literature of distributed systems that optimize loose coupling and high cohesion in service
decomposition. We therefore compiled a catalog of 16 coupling criteria that aims to form
a comprehensive but not conclusive collection based on literature and the input of our
industry partner and our advisor.

These coupling criteria help a software architect to structure architecturally significant
requirements influencing the service decomposition decisions. Figure 1.1 outlines the
criteria catalog structured in viewpoints (rows) and criteria types (columns).

1. Management Summary 2

Cohesiveness Compatibility Constraints Communication

Identity & Semantic Structural
Lifecycle Proximity Vol Yy
. Commonality
Domain
Shared Owner
Consistency Availability Consistency -
[Criticality][Criticality] [Constraint Mutability
Quality
Content
Volatility
g Storage Predefined Network Traffic
poysical [Service Contraint] [Suitability]
n Securit' Security Security
S Contextuality Criticality

Figure 1.1: Coupling Criteria Catalog

Service Cutter

Complementary to the catalog we described an approach to process coupling criteria in
a software to optimize loose coupling between services and high cohesion within services.
We prototypically implemented the Service Cutter, shown in Figure 1.2, to verify this
approach.

The Service Cutter analyzes a user’s system based on its nanoentities. Nanoentities are
elements used by a service to provide business capabilities. They are defined either as
data fields, operations or artifacts. The system is decomposed into services by defining
a certain number of services and assigning all nanoentities to exactly one service.

A user can specify his system by means of well established software artifacts such as
the entity-relationship model or use cases. Based on these specifications, the coupling
between nanoentities is quantified with a score for each coupling criterion.

1. Management Summary 3

2 Service Cutter X
(€ @ localnost & || Q suchen w B + A & =
~
Service Cutter frHome Biimporter ~ ¥FSolver U Coupling & Account -

Service Cutter

#4 Cargo Tracking E‘ (CLEEEEE 4 Export JSON

n S
Location.unLocade Priorities
s Cohesiveness Criteria
ocation name ™
. 'i'"mnm u Identity & Lifecycle Commonality M E‘
2 R argo trackingld
5"""'”&7 [] %"‘ﬁm’ Semantic Proximity n E‘
Rlelovery e A e Leg.unioadTimgy
RouteSpecification arrivalDeadline Shared Owner M E‘
Voyage voy: """""'ﬁ-.di;gﬁ!mmﬁm |]
. HandlingEvent type Latency M E‘
Service B u
- Hmlﬁvenlwmp'e“mm Security Contextuality M E‘
Soteide [nerany i RouteSpecification. destination
Leg loadLocation
Compatibility Criteria
structural Volatility XS E‘
5 L Delivery. roufingStatus
Carmierioveme gt RHERREA S alL ocati
Losation Consistency Criticality XS E‘
Service A " Fullscreen Availability Criticality XS E‘
Responsible for Use Cases: Content Volatility xs E‘
« Creale Voyage IR
« AddCarrierMovement Storage Similarity xS E‘
i Security Criticality XS E
Published Language |
Published Language between Service A - Service B Constraints Criteria
« CarrierMovement arrivalTime Consistency Constraint M E‘
« CarrierMovement departureLocation
« Voyage voyageNumber Predefined Service Constraint M E‘
« CarrierMovement arrivallocation
= CarrierMovement.departureTime Security Constraint M E‘

Hint: Leung algorithm is not deterministic. Recalculate to run the algorithm again.

Analysis Mode

Figure 1.2: Screenshot Service Cutter

The exact importance of coupling is highly dependent on the context of a software
system. Consistency for example is significantly divergent in a banking environment
compared to an online social network. To reflect this, we rate the coupling criteria scores
using priorities.

Decomposition by Graph Clustering

All scores are collected and utilized to construct a weighted, undirected graph. The
nodes represent nanoentities and the weighted edges embody the strength of the coupling
between two nanoentities.

1. Management Summary

Once the graph is constructed, a graph clustering algorithm calculates clusters cutting as
few edges as possible. A cluster represents a candidate service. Edges connecting nodes
of two clusters represent coupling between the services. This process produces candidate
service cuts with high cohesion and low coupling. Figure 1.3 illustrates a graph created

to analyze a sample application.

We utilized two complementary graph clustering al-
gorithms. Girvan-Newman takes the desired number
of clusters as parameter and is especially suitable
for scenarios where a monolithic system is sequen-
tially decomposed into services. The “Epidemic La-

bel Propagation” algorithm by Leung computes the |
number of clusters by itself and therefore suggests a |

suitable number of services to the user.

We performed tests based on an imaginary “Trad-
ing System”, heavily inspired by real banking soft-
ware, and the sample application “Cargo Tracking”
as introduced by Eric Evans in his book on Domain
Driven Design. The Leung algorithm provided ex-
pected or applicable service cuts for both systems
while Girvan-Newman only met our expectations for
the Trading System.

Conclusion

PR
/AN
R

,‘:ﬁ?&?: \

ANDERL
N
Vi

———
K

Figure 1.3: A graph created
for the Cargo Tracking applica-

tion. The colors represent the
detected clusters.

In our thesis, we structured the architecturally significant requirements for service de-
composition into the coupling criteria catalog. The test results suggest that these criteria
are quantifiable and can be optimized leveraging algorithms and software.

The Service Cutter structures and assists the decision making process for new or already
existing systems. We suggest that future projects either focus on tool development to
integrate the Service Cutter into existing software development processes or invest in

further research scoring and algorithms.

2. Introduction

This chapter introduces the project’s goals, scope and context. The original project
definition, signed at the beginning of project, is documented in Appendix E.

2.1 Hypothesis

D. L. Parnas published a paper titled On the Criteria To Be Used in Decomposing Sys-
tems into Modules[28] in 1972. Since then, decomposition of software systems has become
an important area in the field of software engineering. As systems grew more complex,
software engineers started to distribute modules over computer networks and hence called
them services. Architectural styles like Software Oriented Architecture (SOA) have been
introduced to tackle many challenges of such distributed systems.

Nevertheless, even with microservices, the latest incarnation of service orientation, de-
composition is more described as an art than a structured discipline. C. Richardson
writes in his popular introduction to microservices on InfoQ:

Deciding how to partition a system into a set of services is very much an art
but there are number of strategies that can help. One approach is to partition
services by verb or use case.[31]

We consider the described strategies as suitable approaches to service decomposition.
However, we assume that service decomposition can be approached in more structured
way. This leads us to our first hypothesis:

The driving forces for service decomposition of a software system can be as-
sembled in a comprehensive criteria catalog.

2. Introduction 6

To validate this first hypothesis, we created a comprehensive but not conclusive catalog
of coupling criteria. Taking this structured approach to service decomposition a step
further, we formulated a second hypothesis:

Based on the criteria catalog, a system’s specification artifacts can be pro-
cessed in a software to optimize loose coupling between services and high
cohesion within services in a structured and automated way.

To validate this second hypothesis, we developed a prototype based on the criteria cat-
alog. This tool, hence called the “Service Cutter”, analyzes a system’s specification and
suggests candidate service cuts in order to optimize loose coupling between services and
high cohesion within services. A system’s specification contains an entity-relation model,
use cases, and further artifacts as illustrated in Figure 2.1.

=
Domain
Model
\/_\

e
Use Cases (. ; Candidate

\/\

Service Cuts

Service Cutter

Figure 2.1: Input and output of the Service Cutter.

The Service Cutter’s goal is to assist and advise a software architect or developer in
his design decisions regarding service decomposition. The architect needs to assess the
candidate service cuts and compare them with his expectations. The Service Cutter’s
mission is accomplished, if the architect’s expectations are verified or unexpected but
reasonable candidate cuts challenge his preoccupations.

2.2 Project Scope

This section describes the scope and boundaries of this thesis. It first defines some of
the relevant terms used throughout this document.

2. Introduction 7

A system refers to a software application whose architecture needs to be decomposed.

A service can be seen as a module providing a remote Application Programming Interface
(API) to communicate with other services. The term is explained in more detail in
Chapter 3.

Service decomposition refers to splitting a system’s functionality and data into services.
While we focus on service decomposition, most of the concepts are also true for non-
distributed systems where a software internally is decomposed into modules.

Before a system can be decomposed, its functional and non-functional requirement need
to be analyzed and specified in an entity-relationship model, use cases, and other arti-
facts. Based on these specifications the system can be decomposed into services. These
are later implemented and connected using intra service communication. Figure 2.2 il-
lustrates this process.

-m--m---- R T —— N
. S
. System) - Service N
o . . 4
_ ~ Specification z Implementatlon, 4
y. gy 4

Figure 2.2: The thesis in the context of system development.

Our thesis focuses solely on service decomposition. Consequently, the following areas are
not in scope:

e Requirements engineering and system specification need to be done before a system
can be analyzed with the Service Cutter.

e Intra service communication is not in scope of this thesis. S. Newman documents
in his book Building Microservices[26] multiple popular ways for intra service com-
munication like Remote Procedure Calls (RPC), RESTful HTTP services or asyn-
chronous event-based collaboration. Decomposition only defines what is communi-
cated but now how.

e Composing multiple services into workflows or business processes using notations
like Business Process Model and Notation (BPMN) is not in scope.

e Service decomposition tries to minimize coupling between services. Tactics like
caches or Command Query Responsibility Segregation (CQRS), which try to lower
the consequences of coupling introduced by decomposition, are not analyzed.

2. Introduction 8

2.3 Context and Influences

The ideas and concepts presented are influenced by the work of many others. We reused
and embodied existing concepts to our structured way of service decomposition.

2.3.1 Service Oriented Architecture

It was during a course titled Advanced Distributed Systems Design using SOA € DDD
by Udi Dahan where our initial idea to assist service decomposition with an automated
approach emerged. Dahan is the founder of NServiceBus[65], the most popular service
bus for NET and a well known Service Oriented Architecture (SOA) and Domain-Driven
Design (DDD) expert. The approach to tackle service decomposition from the 4+1 View
Model[20] is inspired by him. Approaching decomposition on the basis of data fields, or
the later in the document introduced nanoentites, is motivated by his course.

Further SOA influences are provided by our supervisor throughout the project and during
his course Application Architecture at Hochschule fiir Technik Rapperswil (HSR).

2.3.2 Microservices

In recent years, microservices substituted SOA as the trending architectural style, but
can be seen as a new incarnation of the service oriented approach. Valuable concepts
like service definitions or decomposition criteria are inspired by leading evangelists in
this area such as Martin Fowler, Sam Newman, and Chris Richardson.

2.3.3 Domain-Driven Design

Nevertheless, decomposition is not solely a problem in distributed systems. Eric Evans
introduced in his book Domain-Driven Design: Tackling Complexity in the Heart of
Software[12] a collection of patterns to handle decomposition complexity. Especially the
patterns Aggregate, Entity, Published Language and Bounded Context are integrated in
our approach and serve as input or output of the Service Cutter.

2.4 Market Overview

We were not able to find projects that try to structure and automatically assist service
decomposition. Nevertheless, there are several methodologies and decomposition tools
tackling some of the relevant challenges.

2. Introduction 9

2.4.1 Software Methodologies

The already introduced approaches SOA, microservices, and DDD discuss some decom-
position criteria but do not provide a comprehensive criteria catalog.

Other approaches tackle related problems but are focused on different layers of software
development. Object-Oriented Analysis and Design (OOAD) focuses more on abstrac-
tions like classes and object instances. We integrated OOAD artifacts like the Entity-
Relationship-Model (ERM) as part of the system specification given to the Service Cutter
as input. Business Process Management (BPM) lays an abstraction layer above services,
focusing on business processes and therefore the usage of services rather than their iden-
tification and specification. A detailed analysis on the correlation of OOAD and BPM
with service orientation was published by IBM[41]. Service oriented modeling approaches
like Service-Oriented Modeling and Architecture (SOMA)[2] target similar questions as
this thesis but do not provide detailed descriptions of decomposition approaches. SOMA
suggests decomposition by use cases which resembles our decomposition criterion Se-
mantic Proximity introduced in Chapter 4.

2.4.2 Decomposition Tools

Kenny Bastani suggests a graph based analysis to decompose monolithic software into
microservices[4]. In his decomposition approach, he focuses on dependencies from user
stories to RESTfull HTTP resources. He uses Neo4J GraphGist[64] to visualize the
dependencies but does not run any automated analysis on the graph.

The barrio eclipse plugin[9] analyzes dependencies based on Java source code. It suggests
a candidate package structure by leveraging the Girvan-Newman clustering algorithm.
The tool has been published as part of a student’s project of the Massey University, New
Zealand.

After introducing our hypothesis’s and the broader context of service decomposition, the
next Chapter analyzes the definition of a service and service decomposition principles in
more detail.

3. Domain Analysis

This chapter analyzes the concepts of services and service decomposition in more detail
and concludes with a questionnaire that helps to assess decompositions.

3.1 Service Definition

Service is one of the most used terms in the field of software architecture and has been
defined differently in many papers, books, and blog posts in numerous ways and various
contexts. This section consolidates multiple definitions and defines service for this thesis.

3.1.1 Different Views on Services

The “441 View Model of Software Architecture” by Philippe Kruchten[20] describes
software architecture using the views Logical View, Physical View, Development View,
and Process View which are illustrated by Scenarios. During our research we discovered
that the difficulty to clearly define the word service lies in the fact that different defini-
tions focus on contrasting views. For this thesis we use multiple definitions for the term
service depending if we write about the logical or the physical view of a service.

Logical Service

A service is the technical authority for a specific business capability

— Udi Dahan[8]

This definition focuses more on the logical or scenario view of a service than its technical
representation. He further defines that all data and operations required to provide a
business capability are owned by one and only one service.

Udi Dahan implies that a service is not restricted to a specific application, process,
technology or layer. In fact, it contains required layers itself, including databases, logic,
and User Interface (UI) code.

A logical service is autonomous and composed from many processes, webservices or
databases, but keeps a clear boundary and interface against the outer world. Commu-

10

3. Domain Analysis 11

nication with other parts of the system only happens on a well defined interface on a
common communication channel.

Bounded Context

Another concept describing logical services is the bounded context as defined in the
Domain-Driven Design[11]:

A description of a boundary (typically a subsystem, or the work of a
particular team) within which a particular model is defined and applicable.

A model only used within one bounded context is defined and visible only in that context.
Accordingly, a model used in multiple services needs to have a globally shared definition,
defined as Published Language in the context of DDD[11]:

The translation between the models of two bounded contexts requires a
common Language.

The process of service decomposition as done by the Service Cutter automatically defines
the published language of the system.

Physical Service

Martin Fowler describes a service as following;:

A service will be used remotely through some remote interface, either
synchronous or asynchronous.[16]

This definition by Martin Fowler is based on the physical structure and is close to what
recently has been advertised as a microservice:

In short, the microservice architectural style is an approach to developing
a single application as a suite of small services, each Tunning in its own
process and communicating with lightweight mechanisms, often an HTTP
resource API.[13]

A process providing a remote API might provide business logic, pure technical function-
ality or a data store. A service commonly includes at least a data store, wrapped by
a RESTful HTTP API. Physical services might be congruent with logical services but
very often more complex cases split logical services in multiple physical services.

3. Domain Analysis 12

Should the Service Cutter Produce Logical or Physical Service Candidates?

The Service Cutter incorporates logical and physical aspects in the decomposition process
but focuses more on the former.

Not all reasons to create physical services can be analyzed in a structured way. The
Service Cutter cannot decide if a service using a database runs in a single process or
connects to its database over a remote interface. Similarly, an operations team might
decide to run different logical services on the same machine or even in the same pro-
cess to save resources and simplify deployment. These decisions are often reasoned by
operational aspects rather than the system’s characteristics.

Nevertheless, some physical aspects can be analyzed. As an example, the Service Cutter
is able to receive information about the storage requirements for the system’s data. It
suggests that data with very high storage requires an own service because a different
database technology is necessary.

We define that the Service Cutter focuses on logical services while incorporating physical
aspects whenever possible.

3.1.2 Nanoentities, Building Blocks for Services

Sam Newman writes in his book Building Microservices|26, p. 34]:

When you start to think about the bounded contexts that exist in your organi-
zation, you should be thinking not in terms of data that is shared, but about
the capabilities those contexts provide the rest of the domain.

In order to provide capabilities, a service needs resources. We identified three types of
resources which are the building blocks of services:

Data A service has ownership over some of the system’s data. It is the only instance
responsible for changes on that data and optionally informs other services about
changes. The data is often, but not necessarily, stored in a database. Data which
is published to other services belongs to the published language of the system.

Operations A service has ownership over business rules and calculation logic. These
operations are often, but not necessarily, based on the data the service owns.

Artifacts A service has ownership over artifacts. An artifact is a collection of data
or operation results transformed into a specific format. An example is a business
report which has been built using operations and data.

In order to enable a structured approach to service decomposition, we generalize these
resources with the concept of a nanoentity. Examples for possible nanoentities are illus-
trated in Figure 3.1.

3. Domain Analysis 13

Name Birthday
= Data
DateOfEmployment Address
= Operation
PhoneNumber GrossSalary
= Artifact
CalculatePayrollTaxes PaymentSlip

Figure 3.1: Nanoentities related to an employee.

A service must contain at least two type of nanoentities to be considered a logical service.

« Something only providing CRUD! functions on data is considered a database.
e Something only providing operations is considered a function.
¢ Something only providing artifacts is considered a resource or a database.

Service decomposition is the act of defining a number of services and assigning all na-
noentities to the responsible service. The driving forces for decomposition are discussed
in more detail in the next section.

3.2 Service Decomposition

Well experienced software architects decompose systems by reason of driving forces to
ensure a maintainable, robust and consistent system with business relevance and good
performance. This section describes the forces mostly considered by architects.

Decomposition has been a main discipline for programmers since early in the history
of our industry. David L. Parnas published a paper entitled “On the Criteria To Be
Used in Decomposing Systems into Modules” in 1972[28]. Shortly after, the terms cou-
pling and cohesion as software design metrics appeared as part of the Structured Design
technique[35]:

Coupling A measure of how closely connected two routines or modules are.
In software design, a measure of the interdependence among modules in a computer
program.[36]

Cohesion The manner and degree to which the tasks performed by a single software
module are related to one another.
In software design, a measure of the strength of association of the elements within
a module.[36]

!Create, Read, Update, and Delete

3. Domain Analysis 14

Software architects commonly started to use these metrics to define that good architec-
tures have high cohesion within and low coupling between its parts. Robert Martin later
described a general principle to achieve loose coupling and high cohesion:

Single Responsibility Principle Gather together the things that change for the same
reasons. Separate those things that change for different reasons.[23]

Starting from these principles, we analyzed different types of coupling and cohesion and
created the decomposition model described in the next chapter.

4. Decomposition Model

The decomposition model describes the quality attributes of good service decomposition
solutions and the criteria leading to such. This chapter starts with an overview over
all defined coupling criteria and concludes with the definition of a good decomposition
solution.

A coupling criterion describes an architecturally significant requirement why two na-
noentities should or should not be owned by the same service. These criteria define the
semantic model on which the Service Cutter is built on.

The coupling criteria are a product of literature research and a workshop assembling the
collective software architect experience of our thesis advisor, our industry partner, and
us. We transformed the resulting ideas into the following structured catalog.

4.1 Catalog Overview

We arranged the coupling criteria in a grid as shown in Figure 4.1.

The grid columns represent the following partitions:

Cohesiveness - Criteria describing the cohesiveness of nanoentities and therefore why
they should belong to the same service.

Compatibility - Criteria describing the divergent characteristics of nanoentities. The
service should not contain nanoentities with different characteristics. Examples
for incompatible characteristics are High, Eventually, and Weak for the criterion
Consistency Criticality.

Constraints - Criteria describing constraints which enforce that groups of nanoentities
must be distributed amongst different services or form a service by itself.

Communication - Criteria describing which nanoentities are suitable to be used as
part of the published language shared between services.

15

4. Decomposition Model 16

The rows are inspired by the “4+1 View Model of Software Architecture” by Kruchten[20].
Domain is an enhancement of the Logical View, quality resembles the Process View and
physical matches the Physical View but also includes predefined service constraints. Se-
curity is included in the Development View by Kruchten. We decided to promote it to a
separate layer as it was a prominent requirement in our workshop and other aspects of
the Development View were not relevant for our application.

Domain Criteria describing nanoentities from a business domain perspective.

Quality Criteria describing the quality requirements of a nanoentity directly or related
to a use case. Non-functional requirements are predominantly represented in this
TOW.

Physical Criteria describing the physical or technological aspects of nanoentities.

Security Criteria describing nanoentities from a security perspective.

Cohesiveness Compatibility Constraints Communication

Identity & Semantic Structural
Lifecycle Proximity Volatility
Commonality
Shared Owner

Consistency Availability Consistency -
m [Criticality][Criticality] [Constraint Mutability
Quality
Content
Volatility

Domain

Physical SStorage

. Security
Secliiy Contextuality

Predefined Network Traffic
Service Contraint Suitability

ty

Constraint

Figure 4.1: Coupling Criteria Catalog

4. Decomposition Model

17

4.2 Coupling Criteria Cards

We specified all coupling criteria listed in the catalog as “CC cards” like the following:

Description
User Representation

Literature

Type
Perspective
Characteristics

CC-1 Identity & Lifecycle Commonality

Nanoentities that belong to the same identity and therefore
share a common lifecycle.

- Entity-Relationship Models
- Domain-Driven Design Entities.

Entity definition in Domain-Driven Design:

Some objects are not defined primarily by their attributes.
They represent a thread of identity that runs through time
and often across distinct representations.[12]

Cohesiveness
Domain

n/a

Cards share the following information:

Description explains the coupling criteria in more detail.

User Representation lists concepts or artifacts familiar to the architect that can be
used to feed the criteria information into the Service Cutter.

Literature references the coupling criteria to descriptions in existing literature.

Type Cohesiveness, Compatibility, Constraint or Communication.

Perspective Domain, Quality, Infrastructure or Security.

Characteristics can be applied to a nanoentity and are defined for criteria of type

“compatibility”.

4. Decomposition Model

18

CC-2 Semantic Proximity

Description

User Representation

Literature

Type
Perspective
Characteristics

Two nanoentities are semantically proximate when they
have a semantic connection given by the business domain.
The strongest indicator for semantic proximity is coherent
access on nanoentities within the same use case.

- Coherent access or updates on nanoentities in use cases.

- Aggregation or association relationships in an entity-
relationship model.

Chris Richardson on microservice decomposition:

Deciding how to partition a system into a set of services
is very much an art but there are number of strategies that
can help. One approach is to partition services by verb or
use case.[30]

Single Responsibility Principle by Robert Martin:

Gather together the things that change for the same reasons.
Separate those things that change for different reasons.[23]
Cohesiveness

Domain

n/a

4. Decomposition Model

19

CC-3 Shared Owner

Description

User Representation

Literature

Type
Perspective
Characteristics

The same person, role or department is responsible for a
group of nanoentities. Service decomposition should try
to keep entities with the same responsible owner together
while not mixing entities with different responsible in-
stances in one service.

User defined persons, roles or departments with each con-
taining a group of nanoentities. A nanoentity can only be
associated once.

Conway’s law:

Organizations which design systems are constrained to pro-
duce designs which are copies of the communication struc-
tures of these organizations.[5]

Single Responsibility Principle by Robert Martin:

Gather together the things that change for the same reasons.
Separate those things that change for different reasons. [...]
However, as you think about this principle, remember that
the reasons for change are people. It is people who request
changes. And you don’t want to confuse those people, or
yourself, by mizing together the code that many different
people care about for different reasons.[23]

Cohesiveness
Domain

n/a

CC-4 Structural Volatility

Description

User Representation
Literature

Type
Perspective
Characteristics

How often change requests need to be implemented affecting
a nanoentity’s structure.

Classification of nanoentities in characteristics.

David Parnas on modular programming:

We propose instead that one begins with a list of difficult de-
sign decisions or design decisions which are likely to change.
Each module is then designed to hide such a decision from
the others.[28]

Compatibility

Domain

Often, Normal (default), Rarely

4. Decomposition Model

20

CC-5 Latency

Description

User Representation

Literature

Type

Perspective
Characteristics

Groups of nanoentities with high performance requirements
for a specific user request. These nanoentities should be
modelled in the same service to avoid remote calls.

Use cases with latency requirements. All nanoentities read
or written by the same use case belong a group. A nanoen-
tity can belong to multiple groups.

Design guidelines for application performance by Microsoft:
Minimize round trips to reduce call latency. For example,
batch calls together and design coarse-grained services that
allow you to perform a single logical operation by using a
single round trip.[24]

Cohesiveness

Quality
n/a

CC-6 Consistency Criticality

Description

User Representation
Literature

Type
Perspective
Characteristics

Some data such as financial records loses its value in case
of inconsistencies while other data is more tolerant to in-
consistencies.

Classification of nanoentities in characteristics.

Werner Vogels on consistency requirements:

Strong consistency: After the update completes, any sub-
sequent access (by A, B, or C) will return the updated value.
Weak consistency: The system does not guarantee that
subsequent accesses will return the updated value. A num-
ber of conditions need to be met before the value will be
returned. The period between the update and the moment
when it is guaranteed that any observer will always see the
updated value is dubbed the inconsistency window.
Eventual consistency: The storage system guarantees
that if no new updates are made to the object eventually
all accesses will return the last updated value.[37]

Compatibility

Quality

High consistency (default), eventual consistency, weak con-
sistency

4. Decomposition Model

21

CC-7 Availability Criticality

Description

User Representation
Literature

Type
Perspective

Characteristics

Nanoentities have varying availability constraints. Some are
critical while others can be unavailable for some time. As
providing high availability comes at a cost, nanoentities
classified with different characteristics should not be com-
posed in the same service.

Classification of nanoentities in characteristics.

Eoin Woods on availability and resilience:

Getting your availability characteristics wrong can be very
expensive. However, increased online availability comes at
a cost, whether in terms of more hardware, increased soft-
ware sophistication, or redundancy in your communications
network.[33]

Compatibility

Quality
Critical, Normal (default), Low

CC-8 Content Volatility

Description

User Representation

Type
Perspective
Characteristics

A nanoentity can be classified by its volatility which defines
how frequent it is updated. Highly volatile and more stable
nanoentities should be composed in different services.

- Volatility can be calculated from use case definitions if
they are equipped with a frequency information.

- Nanoentities can be classified by data types to determine
the volatility: Master Data (regularly), Reference Data
(rarely), Transaction Data (often) and Inventory Data (of-
ten) to determine the volatility.

Compatibility

Quality
Often, Regularly (default), Rarely

4. Decomposition Model

22

Description

User Representation
Literature

Type
Perspective
Characteristics

CC-9 Consistency Constraint

A group of nanoentities that have a dependent state and
therefore need to be kept consistent to each other.

An aggregate as defined in domain-driven design.
Aggregate as defined in domain-driven design by FEric
Evans:

A cluster of associated objects that are treated as a unit
for the purpose of data changes. External references are re-
stricted to one member of the aggregate, designated as the
root. A set of consistency rules applies within the aggre-
gate’s boundaries.[12]

Udi Dahan on service decomposition:

If modifying the value of one attribute involves changing the
value of another, then those two attributes should fall under
the responsibility of the same service.[3]

Constraint

Quality
n/a

A Consistency Constraint differs from the Consistency Criticality coupling criteria in
such a way that the constraint groups a set of nanoentities ensuring their atomic pro-

cessing.

For example, a payment and the account balance should be linked using a Consistency
Constraint. The Service Cutter therefore guarantees that those fields are in the same
service. The Consistency Criticality criterion is of type compatibility and only separates

divergent characteristics.

4. Decomposition Model

23

CC-10 Mutability

Description

User Representation
Literature

Type
Perspective
Characteristics

Immutable information is much simpler to manage in a dis-
tributed system than mutable objects. Immutable nanoen-
tities are therefore good candidates for the published lan-
guage shared between two services. Service decomposition
should be done in a way that favors sharing immutable na-
noentities over mutable ones.

Classification of each nanoentity in mutable or immutable.
Udi Dahan on finding service boundaries:

When you find something immutable, that is an indication
that there is some loose coupling between the two sides pass-
ing immutable data.[6]

Communication

Quality
n/a

CC-11 Storage Similarity

Description

User Representation

Type
Perspective
Characteristics

Storage that is required to persist all instances of a nanoen-
tity.

The user classifies nanoentities into the given characteris-
tics. The classification is system specific. In one system a
nanoentity classified as huge might need 1MB, but in an-
other 1GB storage per instance.

Compatibility

Infrastructure

Huge, Normal (default), Tiny

CC-12 Predefined Service Constraint

Description

User Representation

Type
Perspective
Characteristics

There might be the following reasons why some nanoentities
forcefully need to be modeled in the same service:

- Technological optimizations

- Legacy systems

User defined service with each containing a group of na-
noentities. Each nanoentity can be associated only once.
Constraint

Infrastructure

n/a

4. Decomposition Model

24

CC-13 Network Traffic Similarity

Description

User Representation

Type
Perspective
Characteristics

Service decomposition has a significant impact on network
traffic, depending on which nanoentities are shared between
services and how often. Small and less frequently accessed
nanoentities are better suited to be shared between services.
Use cases define the frequency of access on nanoentities.
The size of each entity can be determined by CC-11: Storage
Similarity

Communication

Infrastructure

n/a

CC-14 Security Contextuality

Description

User Representation

Type
Perspective
Characteristics

A security role is allowed to see or process a group of na-
noentities. Mixing security contexts in one service compli-
cates authentication and authorization implementations.

User defined security roles with each containing a group of
nanoentities. A nanoentity can be associated to multiple
groups.

Cohesiveness

Security

n/a

CC-15 Security Criticality

Description

User Representation
Type

Perspective
Characteristics

Criticality of an nanoentity in case of data loss or a privacy
violation. Represents the reputational or financial damage
when the information is disclosed to unauthorized parties.
As high security criticality comes at a cost, nanoentities
classified with different characteristics should not be com-
posed in the same service.

Classification of nanoentities in characteristics
Compatibility

Security

Critical, Internal (default), Public

4. Decomposition Model 25

CC-16 Security Constraint

Description Groups of nanoentities are semantically related but must
not reside in the same service in order to satisfy information
security requirements. This restriction can be established
by an external party such as a certification authority or an
internal design team.

User Representation Demilitarized zones or other groups of nanoentities that
should be composed to different services.

Type Constraint

Perspective Security

Characteristics n/a

4. Decomposition Model 26

4.3 Decomposition Questionnaire

The following questionnaire is based on the coupling criteria and aims to fulfill the
principles introduced in Chapter 3. In a good decomposition solution, the answer to all
those questions should be yes.

1. Does the service cut comply all constraint criteria?

6.
7.

. Does the service cut combine as few nanoentities with diverging characteristics

into one service as possible?

. Does each service depends on as few nanoentities of other services as possible? A

use case should cross as few service boundaries as possible.

. Are the nanoentities that are part of a published language between services suitable

for intra service communication?

. Is the coupling between services similar? It is not the size of services that requires

homogeneity within the system but the amount of published language between
services.

Are there not too many services? This is called the nanoservice antipattern[32].
Are there not too few services? This is a monolithic architecture.

These questions form a checklist to validate a service cut suggested by the Service Cutter.
This approach is outlined in Section 9.2.8.

After presenting the decomposition model, the next chapter defines the requirements for
the prototypically implementation of the Service Cutter.

5. Service Cutter Requirements

This chapter describes the (non-)functional requirements of the Service Cutter and covers
the characteristics of its target users.

The requirements in this chapter are not prioritized. As part of the sprint planning
meetings, these requirements are transformed to tasks and prioritized. The description
in this chapter is meant to provide a high level overview and establish a common sense
between all stakeholders of this project.

5.1 Personas

The personas are inspired by a series of discussions in meetings and workshops with our
stakeholders.

5.1.1 Junior Jedi-Master

Junior has been a fast learning and aspiring developer since he graduated from university
with a master’s degree in information technology eight years ago. In his new job, Junior
finds himself in the role of an architect for a new and promising product that enjoys the
support of well known investors. In consequence of his experience in distributed systems,
he has been assigned with the task to decompose the system’s business model into logical
services of which each will be split into multiple separately deployable microservices.

Junior strongly believes in automation and using every tool available to support and
complete his work. For his current project he plans to try the Service Cutter as a foun-
dation and verification of his architectural decisions.

5.1.2 Walter Wisenheimer

Walter is an architect with many years of experience in the industry and has built
numerous systems already. Walter has seen many automation concepts and tools failing
their goals. In Walter’s view a natural and obvious outcome — an architect’s world is too
complex to model and automate in a system or algorithm.

27

5. Service Cutter Requirements 28

After a longer discussion with a very motivated junior developer who recently joined
his company, Walter starts to see the benefits of the well structured format the Service
Cutter organizes architecturally relevant information. Using the tool to structure and
document his systems characteristics might be of benefit as currently a lot of his precious
knowledge remains tacit[42].

Walter decided to try the Service Cutter to structure the information for the current
project he is working on.

5.1.3 Stan Student

Stan studies Computer Science and as part of his class in service oriented software archi-
tecture he is supposed to design a set of services for the Cargo Tracking[49] domain. The
Service Cutter guides him through the important decisions by asking a set of questions
and presents him a set of possible service cuts.

Being overwhelmed of all the data requested by the Service Cutter, he would like to
configure the tool to only focus on the data he got provided in his exercises.

Stan then discusses the advantages and disadvantages of the presented options with his
fellow students. He furthermore asks his Professor about the to him unknown criteria
the Service Cutter requested and why that information might have an impact on service
decomposition.

5.1.4 Tom Tutor

Tom wants to introduce his students to the software architecture craft. He uses the
Service Cutter to visualize the different ways of distributing data into services during
his lectures. By changing the calculation parameters, he can demonstrate that software
architecture mostly depends on the context of the requirement. The same problem might
have different solutions in varying circumstances.

5.1.5 Eddie Enterprise

Eddie is an enterprise architect employed by a large software consulting company. He
usually works for a couple of months on a project. His customers expect from him that he
influences important decisions even beyond his assignment. To achieve this, he decided
together with the local project team that every decision they take has to be documented
using a structured approach. He would like to utilize the Service Cutter’s approach to
ensure that all important aspects of coupling and cohesion are considered as part of the
service decomposition.

5. Service Cutter Requirements 29

5.2 Functional Requirements

The Service Cutter faces the functional requirements presented in this section.

5.2.1 Coupling Criteria

The criteria of type Cohesiveness, Compatibility and Constraints must be supported.
The Service Cutter needs to rate for each criterion which nanoentities need be placed in
one service and which need to be separated over multiple services. Within this rating,
every coupling criterion is equally respected.

Criteria of type Communication do not describe the need to merge or separate na-
noentities but characterize nanoentities suitable for inter service communication and are
handled with a lower priority than other criteria.

5.2.2 User Representations

To achieve better usability, the user does not need to know the exact definitions of the
coupling criteria or their internal structure. He can use well known software engineering
artifacts called user representations to describe his system, from which the relevant
nanoentities and coupling criteria data will be extracted by the Service Cutter. At least
the following User Representation must be supported by the system:

Entity Relationship Diagram containing entities and their relations to each other.
Each entity contains a list of nanoentities building the basis for a systems analysis.

Use case containing at least information about all nanoentities read or written in a
particular case.

Categorization of the nanoentities in different characteristics per compatibility cou-
pling criterion.

5.2.3 Priorities

As every coupling criteria is respected equally in the rating process, the user needs
an additional way to prioritize criteria according to its system characteristics. For an
application processing financial data, security might be more important than network
traffic. For an application that needs to support high volumes of data, volatility and
resilience might be a primary focus.

The system should allow to change priorities for all supported coupling criteria while
providing reasonable defaults.

5. Service Cutter Requirements 30

5.2.4 Candidate Service Cuts

Based on the input provided by user representations and the defined criteria priorities,
the Service Cutter produces a set of candidate service cuts for the analyzed system. The
definition of a good service cut is elaborated in Section 4.3

A candidate service cut can be exported in a machine-readable format.

5.2.5 Visualize Published Language

If relevant user input (e.g. use case definitions) is available, the Service Cutter is able to
tell which service depends on which nanoentities of other services. These dependencies
need to be visualized. All nanoentities shared between different services make up the
published language of the system and need to be visualized as such.

Identify Hard Architectural Decisions

The rating of two solutions might be similar so that is not clear which variant is the better
one according to the user’s priorities. Such cases indicate difficult design decisions the
architect has to take. Presenting these cases and the impact they have on each coupling
criteria, the Service Cutter provides great support for the architect in identifying and
taking architectural decisions.

5.3 Non-Functional Requirements

The following non-functional requirements should be satisfied by the Service Cutter.

5.3.1 Usability

A software architect should be able to use the software without any training. All controls
are clearly named and, where appropriate, documented using an inline user manual
including representative samples.

The user gets well introduced to the important concepts of the Service Cutter. These
concepts include:

1. Nanoentities

2. Coupling criteria, their meaning and decomposition impact
3. User representations and their impact on coupling criteria
4. Coupling criteria priorities

Often used configuration like coupling criteria priorities should be shown directly to the
user to encourage its usage. More advanced configuration like the values of characteristics

5. Service Cutter Requirements 31

should be accessible for the user but do not need to be shown directly in a standard
workflow.

5.3.2 Simplicity

A simple system analysis can be achieved with not more than 5 clicks. All steps are
provided with useful defaults that can be changed.

5.3.3 Performance

All regular user interactions should not take more than one second.
Calculations of service cuts should meet the following conditions assuming a data set of
2000 nanoentities.

e (alculations that are used once per day should take less than 10 minutes.
e Calculations that are used once per minute should take less than 5 seconds.

5.3.4 Monitoring, Logging, Deployment, Availability

The scope of this thesis is to prototypically implement the Service Cutter. Operational
aspects only need to be covered on a basic level:

o Log files should be written using SLF4J[74].
o Deployment should be provided with Docker[51] containers.

5.3.5 Fault Tolerance

As the prototype does not need to handle every possible use case or unexpected input, a
common error handling needs to be built into the application and ensures that operations
continue even in case of unexpected input or state.

5.3.6 Maintainability

In case of a success the prototype might be the basis for further development or other
thesis projects. It should be built in clearly separated modules (or even remote ser-
vices) to ensure good maintainability. At least the following modules need to be clearly
separated:

1. Internal representation of coupling criteria
2. Data of a user’s system (nanoentities, use case definition etc.)
3. Decomposition algorithm (Solver)

5. Service Cutter Requirements 32

4. User interface

If one or multiple of the modules are implemented as physical services, the remote API
needs to be implemented as RESTful HT'TP interface.

The application should leverage existing open source frameworks or libraries wherever
possible to ensure a minimal maintenance effort.

5.3.7 State-of-the-Art Technology

To support further development of the Service Cutter the prototype needs to be imple-
mented in state-of-the-art technology. Our industry partner has suggested the following
technology stack:

. Java Spring[70] as a base framework.

. JHipster[60] with Spring Boot[68] for project setup.

. AngularJS[43] and Bootstrap[47] for the user interface.

. Docker[51] for container and deployment configuration and handling.

=W N =

5.3.8 License

All involved parties decided to release the Service Cutter under the terms of the Apache
2.0 open source license.

After defining all (non-)functional requirements, the next Chapter outlines design and
implementation steps which were taken to satisfy these requirements.

6. Service Cutter Design and
Implementation

To satisfy the requirements defined in Chapter 5, the Service Cutter was built. This
chapter documents design and implementation aspects.

6.1 Overview
This overview introduces the Service Cutter process and its most important concepts.

6.1.1 Service Cutter Concepts

Figure 6.1 illustrates the important concepts the Service Cutter is based on.

1 0. Nanoentity 0.+ 0.
User S
Representation corer
1. 1. Coupling " r
Criterion -
1
1
Priority

Figure 6.1: Service Cutter Concepts

33

6. Service Cutter Design and Implementation 34

The illustration does not show technical representation of the concepts but rather their
logical relations:

e A user representation might contain a list of nanoentities and contains data relevant
for one or multiple coupling criteria.

e A coupling criterion analyzes one or multiple user representations considering the
given priority. Each coupling criterion has a scorer assigned.

e A scorer calculates coupling between nanoentities and is used for one or multiple
coupling criteria.

e A nanoentity is imported by a user representation. Its coupling to other nanoenti-
ties is scored by scorers containing relevant information.

6.1.2 Service Cutter Layers

The Service Cutter is split into two layers shown in
Figure 6.2. The Engine contains all coupling criteria
information, stores a user’s system specification, and
calculates candidate service cuts. The Engine pro-
vides a RESTful HTTP web service for all relevant
interactions. Based on this API, the web based Editor
provides a graphical user interface.

Figure 6.2: Service Cutter
Layers

6.1.3 Service Cutter Process

The Service Cutter’s decomposition calculation is based on nanoentities. In a first step,
nanoentities are inserted into the Service Cutter and define a system to be analyzed.
The user then specifies his system with user representation in a second step. During the
third step, the decomposition process provides candidate service cuts showing how the
nanoentities could be split into services. The user finally analyzes the cuts and compares
them with his own expectations. The process is illustrated in Figure 6.3.

6. Service Cutter Design and Implementation 35

System System Service Analyse
Definition Specification Decomposition Service Cut

Figure 6.3: Service Cutter Process

Step 1: System Definition

In this step all nanoentities of the system to be analyzed are loaded in the Service Cutter.
For the prototype, the only way to define a system’s nanoentities is by uploading an
ERM. An entity—relationship model consists of data fields, entities and relationships.
The data fields are imported as nanoentities and define the system to be analyzed.

Step 2: System Specification

The second step adds coupling information to the system’s nanoentities by uploading
user representations. By uploading the ERM, the first coupling information have already
been added. The entities define the Identity € Lifecycle Commonality criterion data and
relationships of type aggregation influence the Semantic Proximity criterion.

The Service Cutter considers entities connected with an inheritance or a composition
relation to have one identity and lifecycle. The Engine internally combines entities con-
nected by these relations to one group of nanoentities. In order to determine which
entities can be combined, we perform a topological sort[27] on the ERM relations.

The ERM is just one of many user representations listed in Section 6.2 to specify a
system.

Step 3: Service Decomposition

Once the user has defined and specified his system, he optionally sets coupling criteria
priorities matching his system requirements and then starts the decomposition process.
The Engine groups nanoentities in a way that a good decomposition solution as described
in Section 4.3 is found.

The Editor then presents the candidate service cuts to the user.
Step 4: Analyze Service Cuts

Once candidate service cuts have been presented, the user needs to interpret them and
compare them with his own expectations.

6. Service Cutter Design and Implementation 36

If use cases have been imported as user representations, the Service Cutter defines which
candidate service is responsible for which use case. A use case is assigned to the service
owning most of the relevant nanoentities of that use case.

Because use cases are assigned to services, the published language between services can
be calculated. The published language contains all nanoentities a service needs from other
services to process his use cases. Use case responsibilities and the published language
are presented to the user assuming they have been loaded into the Service Cutter.

The candidate service cuts can be exported as a JavaScript Object Notation (JSON) file
as defined by the JSON Schema listed in Appendix D.2.

After introducing a broad overview, the next sections describe the introduced concepts
in more detail.

6.2 User Representations

The Service Cutter provides a data import based on the user representations.

A user representation is a concept familiar to the architect that can be used to feed
the criteria information into the Service Cutter. The following user representations are
supported:

e An ERM consists of data fields, entities and relationships. The data fields are
imported as nanoentitites, the entities and relationships of type composition or
inheritance as Identity & Lifecycle Commonality and relationships of type aggre-
gation as Semantic Proxzimity.

e Use cases primarily describe the Semantic Prozimity of a group of nanoentities.
They can also be marked as latency critical which then results in Latency.

e Shared owner group represents a person, role or department that is responsible
for a group of nanoentities, defining Shared Owner.

o An aggregate is a DDD pattern defining a group of nanoentities that require
consistency to each other which results in Consistency Constraint.

e The entity is a DDD pattern defining a common lifecycle and identify for a group
of nanoentities. This defines Identity € Lifecycle Commonality.

o A predefined service represents a service that already exists and therefore is
harder or impossible to change. It defines the identically named criterion Predefined
Service.

e Separated security zones represent groups of nanoentities that should not be
combined into a common service for security reasons. They are defining the Security
Constraints.

6. Service Cutter Design and Implementation 37

e A security access group represents a group of nanoentities that share a common
security context, defining the Security Contextuality.

e Compatibilities can be used to import all coupling criteria of type Compatibility.

Figure 6.4 lists all user representations and indicates which coupling criteria they are
linked to.

User Representations Coupling Criteria
Entities Identity & Lifecycle Commonality
ERM Semantic Proximity
Use Cases Latency
Aggregates Consistency Constraint
Shared Owner Groups Shared Owner
Predefined Services Predefined Service Constraint
Separated security zones Security Constraint
Security access groups Security Contextuality

Content Volatility
Structural Volatility
Compatibilities Availability Criticality
Consistency Criticality
Storage Similarity
Security Criticality
Network Traffic Similarity

Mutability

Figure 6.4: User representations and the related coupling criteria

The technical format including JSON schema files of all user representations is docu-
mented in Section 6.6.4 or in more detail on the GitHub wiki[67].

6. Service Cutter Design and Implementation 38

6.3 Decomposition by Graph Clustering

Service decomposition describes the task of grouping nanoentities into services. Achiev-
ing a good solution according to the defined coupling criteria as described in Section 4.3
requires a non trivial algorithm. We approach this problem by using a weighted undi-
rected graph and clustering algorithms as described in this section. Other approaches

have been evaluated but could not provide satisfying results as documented in Appendix
A.

To create a weighted undirected graph, every nanoen-
tity in the model is represented by a node. Edges

define a relationship between two nanoentities. The
Nano Nano Nano

weight on each edge shows how close or cohesive two \EntityA)21\ Entityc /1 \ Entity D
nanoentities are. The higher the weight, the more ! o ok
likely they should belong to the same service. Fig- ' '
Nano Nano
ure 6.5 shows an abstract example of such a graph. T m—
Nano
Entity F

Figure 6.5: Example of a
Weighted Graph

6. Service Cutter Design and Implementation

Figure 6.6 outlines a solution sketch for this
approach. User representations like an ERM
or use cases are imported. The Importer
component extracts the nanoentities and the
coupling meta data and stores this informa-
tion in a database.

The Solver then creates all nodes from the
nanoentities and builds weighted edges be-
tween them according to the stored coupling
criteria instances. This task is complex for
the following reasons:

1. Coupling criteria are not homogeneous
as described in Section 4.1. Cohesive-
ness criteria describe why nanoenti-
ties should belong to the same ser-
vice while compatibility criteria ask for
separation of nanoentities. Constraints
criteria might require both. Criteria of
type communication need to be pro-
cessed differently as they define which
nanoentities are suitable to be trans-
mitted across services. The informa-
tion from all types needs to be rep-
resented with a single unit to define a
number used as a weight of an edge.

2. Using a single number with only one
unit of measurement bears the risk of
unintended change of the relative im-
portance between the coupling crite-
ria. It is important to carefully assure
that each coupling criterion uses the
same range of numbers to allow com-
parison and prioritization of each cri-
terion.

3. To allow the user to define the specific
requirements of his system, priorities
per coupling criteria can optionally be
defined to influence the weights of each
coupling criteria instance.

39

User

Representations

I
is used
A 4

"A} Importer
»

is used|- Predefined Coupling
Criteria Catalog

create create

Coupling Critera
Instances

is used is used
A 4

User Priorities | |

"A} Solver is used
»
|

creates

Weighted Graph

is used

K

S Clustgring
{ Algorithm

1
creates

The Clustering Algorithm then analyzes the Figure 6.6: Solution Sketch for a

graph and creates clusters of nanoentities so Weighted Graph with a Clustering Algo-
that as few edges as possible need to be cut. rithm

6. Service Cutter Design and Implementation 40

6.4 Clustering Algorithms

A clustering algorithm is required to split the undirected, weighted graph into groups of
nodes having as few connections between the clusters as possible.

A full comparison of the evaluated algorithms is attached in Appendix C.

The remaining three algorithm candidates are Girvan-Newman, MCL, and Leung. Leung
is provided by the GraphStream project. Girvan-Newman and MCL are implemented
as Gephi plugins. Gephi is a desktop platform with a well developed Ul to explore and
visualize complex graphs and network systems. The platform provides a toolkit to use
its functionality without a UI. The source code of the algorithms can be extracted from

the plugins as Java Archive (JAR) files using the UnpackNBM tool[75].

Table 6.1 documents the detailed evaluation of the three candidate algorithms.

Table 6.1: Evaluation of cluster algorithms

MCL Leung Girvan-Newman
Author Stijn van Dongen[10] U. N. Raghavan[29], Ian | M. E. J. Newman, M.
X.Y. Leung[22] Girvan[25]
Year 2000 2007,/2009 2003
Name Markov Cluster Algo- | Epidemic Label Propa- | Girvan—-Newman
rithm gation
Approach Random walks Labels spread to their | Edge betweenness,
neighbors based on shortest-paths
Performance | O(Nk?) O(EN) [22, p.3] O(N?3)[25, p.14]
N: Nodes k: pruning constant [10,
E: Edges p.126]
Java Imple- | Plugin of Gephi[57] GraphStream Plugin of Gephi[57]
mentation project[58]
Test result Bugs Good Good
Deterministic | No No Yes
Number No No Yes
of clusters
parameter

The Markov Cluster (MCL) algorithm is theoretically suitable to calculate the clusters.
However, we found the Java implementation not to be mature enough as the output
contains overlapping or missing nodes so that the distinct clusters requirement is not
met. Leung and Girvan-Newman are used in the Service Cutter and both provide good
results as documented in Appendix B.

6. Service Cutter Design and Implementation 41

6.4.1 Girvan-Newman

M. E. J. Newman and M. Girvan[25] proposed to use a divisive approach to graph
clustering. This approach repeatedly finds the least similar connected pair of nodes
and removes the edges between them. The least similar connected pair is defined by
edge betweennees which can be calculated using different approaches as described by
Girvan-Newman. The Gephi implementation used in the Service Cutter calculates edge
betweenness as the number of shortest paths of any pair of nodes running through an
edge. Edges with the highest edge betweenness are removed first. This process divides
the graph into smaller and smaller components and can be stopped at any time to select
the components at this time to be the graph clusters.

In the ordered graph in Figure 6.7 Girvan-Newman would remove the edges in ascending
order. The graph is split into 4 clusters after 2 iterations.

ﬁzﬁrjﬁzﬁ
— Y c Y — 9 -5

Figure 6.7: Girvan-Newman forms clusters by removing edges iteratively

Girvan-Newman receives the number of clusters as a parameter and stops as soon as
the desired number has been reached. One iteration might remove multiple edges with
the maximum edge betweenness. One iteration can therefore produce numerous new
clusters so that the requested number of clusters cannot be provided. In this case the
gephi implementation looks for a result having the least difference in number of clusters,
The Service Cutter displays a warning that the requested number of services could not
be provided.

As this algorithm does not include random elements, the proposed clusters are always
identical.

6.4.2 Leung

In 2009 Leung et al[22] refined the “Epidemic Label Propagation” algorithm as proposed
by Raghavan et al[29] in 2007.

Raghvan described the algorithm as follows:

6. Service Cutter Design and Implementation 42

Each node in the network chooses to join the community to which the maz-
imum number of its meighbors belong to, with ties broken uniformly ran-
domly. We initialize every node with unique labels and let the labels prop-
agate through the network. As the labels propagate, densely connected groups
of nodes quickly reach a consensus on a unique label.[29, p. 4].

Leung does not specify an order in which nodes are to be processed. Therefore, the labels
may spread differently in repeated runs. We witnessed varying clusters while testing the
Service Cutter as document in Appendix B.

The algorithm occasionally forms so called “monster” families as described by Leung et
al resulting in a drop of cohesion in a cluster.

[- ..] certain communities do not form strong enough links to prevent a foreign
“epidemic” to sweep through.[22, p. 5]

Leung et al therefore refined the algorithm by adding a “Hop Attenuation Factor” ¢ to
prevent labels from spreading across two clusters. He explains:

The value § governs how far a particular label can spread as a function of
the geodesic distance from its origin. This additional parameter adds in extra
uncertainties to the algorithm but may encourage a stronger local community
to form before a large cluster start to dominate.[22, p. 5]

These parameters decelerates the propagation of a cluster from its origin and therefore
encourages a stronger local cluster to form before a large cluster starts to dominate.

We observed monster clusters especially in the DDDSample documented in Appendix
B.2 and were able to reduce their likelihood by increasing the hop attenuation factor to
a value of § ~ 0.55 compared to a default of § = 0.1 as provided by the GraphStream
implementation. We decided to keep the value of § = 0.55 as the default of the Service
Cutter.

6.4.3 Discussion

Two main differences between Leung and Girvan-Newman algorithms are determinism
and the number of clusters parameter. This section discusses the advantages and disad-
vantages of each.

Determinism

Results of a deterministic algorithm like Girvan-Newman can be reproduced by running
the algorithm again with the same input data. The influence of different input data,

6. Service Cutter Design and Implementation 43

scoring values and priorities can therefore be analyzed as the algorithm itself does not
contain a random element.

A non-deterministic algorithm like Leung complicates analysis since changes in results
cannot clearly be identified as consequence of changes in input or randomness. Further-
more results always need to be safely persisted and reloaded since they cannot be reliably
reproduced.

Nevertheless, our industry partner accurately pointed out that an element of randomness
is not only a disadvantage. Running multiple algorithm cycles presents different solutions
and outlines where the difficult architectural decisions reside.

Number of Clusters Parameter

Providing the number of clusters as a parameter to the algorithm has the advantage
of analyzing the service decomposition with any possible number of services. This fea-
ture can be used to better understand the structure and coupling between parts of the
analyzed system by running an analysis with a number of services that is not optimal.
Requesting a high number of service provides indications of how services internally might
be further decomposed into modules.

Furthermore, the parameter allows to help in the process of emerging from a monolithic
architecture to service orientation as described in Section 7.1.

Nevertheless, algorithms requesting the number of services as a parameter hand over the
responsibility to answer this critical question to the user instead of answering it itself.
Our industry partner pointed out that architects are often prejudiced on the number of
services their system should be composed of. Having the Service Cutter providing not
only the content of each service but also the number of services challenges the user to
reassess his ideas against the candidate service cuts provided.

After analyzing and evaluating different algorithms, the next section documents the
scoring process used to define the weights between on edges between nodes.

After documenting the algorithm evaluation, the next section describes the scoring pro-
cess used to define the weights of the edges in the graph.

6.5 Scoring

The scoring process rates the relation of two nanoentities with a score. A higher positive
score states that these entities should be modeled in the same service while a negative
score asks for a separation of the nanoentities into different services.

6. Service Cutter Design and Implementation 44

<<nanoentity>>
News.description

Score: 2 Score: -7
<<nanoentity>> Score: 9 <<nanoentity>>
Position.balance Account.number

Figure 6.8: Simple Scoring Example

Figure 6.8 shows three nanoentities from the Trading System (see Appendix B.1) and
their potential scores to each other. The relation Position.balance to Account.number
has a high score as these nanoentities are often accessed in the same use cases and
therefore get a high score from the Semantic Proximity criterion. News.description to Ac-
count.number has a negative score. These nanoentities do not have common use cases and
do not belong to the same entity, so the positive scores from cohesiveness criteria are low
or zero. Different characteristics like low availability requirements for News.description
and critical availability requirements for Account.number lead to a negative score.

In this simple example, the Service Cutter would most probably suggest two services, one
with Account.number and Position.balance and another one with the News.description.

6.5.1 Single Dimensionality

A Dbig challenge with the graph based approach is that weights between nodes only have
one dimension with a single unit of measurement. The edges can describe how close or
cohesive two nanoentities are. This suits well to all coupling criteria of type cohesiveness
as they describe reasons to combine nanoentities in the same service. Coupling criteria
describing separation or incompatibility, where separation of nanoentities is asked by
constraints or different nanoentity characteristics, cannot accurately be described using
the weight on the edge.

Our approach to solve this problem is to introduce negative scores as shown in the
example above. A negative score implies in the view of a coupling criterion that two
fields should be separated into different services. If the negative score exceeds the positive
score given by cohesiveness criteria, the edge between two nanoentity nodes is removed.

6. Service Cutter Design and Implementation 45

This approach implies two disadvantages:

1. By removing edges with a score lower than zero, information about the need for
separation is lost. The scores of —120 and —1 are processed equally.

2. Positive and negative scoring criteria must be balanced out. Too many negatively
scoring criteria or high prioritization of such criteria leads to elimination of the
positive data and therefore of all information available.

Nevertheless, the practical assessment documented in Appendix B proves effectiveness
of this approach. Firstly, nanoentities without an edge are unlikely to be placed into
the same service by the algorithm. Secondly, systems are described using an ERM and
use cases so that cohesiveness criteria are already provided with information. Negative
scoring criteria only produce scores if nanoentities are described with characteristics not
equal to the default characteristics. We furthermore defined the default priorities for
each criterion, as described later in this section, in a way that positive scoring criteria
are prioritized higher. Section 9.4.1 outlines the need for a better concept the handle
separations.

6.5.2 Scoring Process

To determine the final score between two nanoentities, three steps are required. First ev-
ery coupling criterion scores the relations it has information about. After that, priorities
for each criterion are applied. Finally, the prioritized scores of all criteria are summed
up to a final score.

Step 1: Score by Coupling Criterion

Every coupling criterion calculates a score between —10 and 10 for each nanoentity
relation AB.

criteriali].scoreap = —10...10

A score of 10 implies that “From the view of coupling criterion ¢, the nanoentities A and
B should definitely reside in the same service.” A score of —10 implies that “From the
view of coupling criterion ¢, the nanoentities A and B should definitely not reside in the
same service.”

The range from —10 to 10 was chosen to be able to compare scores of different coupling
criterion with each other. A fixed range guarantees that not one criterion receives more
importance than another one due to its scoring logic. Other ranges like —1.00 to 1.00
would have worked as well, but in our opinion integer numbers are easier to understand
for users than rational numbers.

It is important to notice that not every criterion has to use the full possible range.
Coupling criteria of type cohesiveness tend to score only positive values, as they describe

6. Service Cutter Design and Implementation 46

why nanoentities should be composed in the same service. Criteria of type compatibility
or constraints on the other hand tend to score negative, as they describe reasons to split
nanoentities into different services.

Step 2: Prioritized Coupling Criteria

In the second step, the coupling criteria are prioritized relatively to each other. Table
6.2 outlines all possible priorities.

Table 6.2: Coupling Criterion Priorities

Representation | Value
IGNORE 0

XS 0.5

S 1

M 3

L 5

XL 8
XXL 13

The priorities are represented by t-shirt sizes each defining a priority value. By recom-
mendation of our industry partner and inspired by agile estimation scales!, we chose a
progressive and nearly exponential value sequence.

Having very high values, allows analyzing a system in the Service Cutter with focus on
one or two coupling criteria only, as giving a criterion the priority XXL quickly makes
it more important than many of the other criteria together. With progressive values we
obtain this ability while still keeping the number of priorities small in order to make it
simpler to map each criterion to a priority.

The priority of each criterion is multiplied with all scores given by that criterion.

criteriali].prioritizedScoreap = criteriali].scoreap * criteriali].priorityV alue

It is important to distinguish between a criterion score (step 1) and a prioritized score
(step 2). A criterion score is a statement on the relation of two nanoentities per cou-
pling criterion where each coupling criterion has the same importance (—10 to 10). The
prioritized score multiplies this statement by the importance of the criterion in the ana-
lyzed system. Priorities are very context sensitive. A real-time entertainment system for
example will have for example very different priorities than a system handling financial
transactions.

! Alex Yakyma wrote an insightful paper on why progressive estimations are efficient for teams[38].

6. Service Cutter Design and Implementation 47

Step 3: Final Relation Score

The final relation score between two nanoentities is the sum of all prioritized scores per

coupling criterion:

n

finalScoreap = Z criteriali].scoreap * criteriali].priorityValueap

=1

The undirected, weighted graph is then built with each node representing a nanoentity.
Nanoentity relations with a positive score are connected by a weighted edge:

edgeWeight sp = maz(0, finalScore,p)

6.5.3 Default Priorities

By reasons of the single dimen-
sionality problem described in Sec-
tion 6.5.1 we defined the default
priorities for coupling criteria in a
way that negatively scoring crite-
ria are prioritized lower than pos-
itively scoring criteria. This does
not apply to constraints as these
commonly play an important role
in the decomposition process.

We defined the following defaults
for the coupling criteria types.

e (Cohesiveness: M
e Compatibility: XS
o Constraints: M
Figure 6.9 demonstrates how a user

can change the priorities in the Ser-
vice Cutter.

Priorities

Cohesiveness Criteria

Identity & Lifecycle M v
Commonality

Semantic Proximity KL v
Shared Owner W v
Latency W v
Security Contextuality W v

Compatibility Criteria

Structural Volatility NS v
Consistency Criticality NS -
Availability Criticality NS -
Content Volatility NS v
Storage Similarity NS -
Security Criticality NS -

Figure 6.9: Screenshot of default priorities in the
Service Cutter.

6. Service Cutter Design and Implementation 48

6.5.4 Scoring Logic

This section documents how each coupling criterion calculates its criterion score from
—10 to 10.

Figure 6.10 shows the CriterionScorer interface used to calculate criterion scores.

CohesiveGroupCriteriaScorer

J | ExclusiveGroupCriteriaScorer
’ e
K4 7’
7’
. 4
<<interface>> A —
CriterionScorer :] _____ SeparatedGroupCriteriaScorer
getScores(Set<CriterionInstance> instances) v N
. H H ~
- Map<EntityPair, Double> ~ < _ | SemanticProximityCriterionScorer
~ ~

§ CharacteristicsCriteriaScorer

Figure 6.10: CriterionScorer interface and its implementations.

Table 6.3 outlines which implementation is used for which coupling criterion.

6. Service Cutter Design and Implementation 49

Table 6.3: Coupling Criteria and their scorer implementation.

Coupling Criteria Scorer Implementation
Shared Owner CohesiveGroupCriteriaScorer
Consistency Constraint

Identity & Lifecycle Commonality
Latency

Security Contextuality

Predefined Service Constraint ExclusiveGroupCriteriaScorer
Security Constraint Separated GroupCriteriaScorer
Semantic Proximity SemanticProximityCriterionScorer
Content Volatility CharacteristicsCriteriaScorer

Consistency Criticality
Availability Criticality
Structural Volatility
Storage Similarity
Security Criticality
Mutability No Implementation
Network Traffic Suitability

CohesiveGroupCriteriaScorer

The criteria using the CohesiveGroupCriteriaScorer define one or more groups of na-
noentities that for some reason should be kept together in one service.

The scorer sets the maximum score of 10 for every relation between nanoentities inside
a group.

ExclusiveGroupCriteriaScorer

A ExclusiveGroupCriteriaScorer is used for the Predefined Service Constraint criterion.
The scorer implements the same logic as a CohesiveGroupCriteriaScorer, but additionally
sets a penalty of —10 from a nanoentity inside a group to all other nanoentities which
do not share the same group.

SeparatedGroupCriteriaScorer

A SeparationCriteriaScorer is used for the criterion Security Constraint. The criterion
defines two or more groups of nanoentities which should clearly be separated into different
services for security reasons.

The implementation sets a negative score of —10 from each nanoentity to all other
nanoentities defined in other groups than the own one.

6. Service Cutter Design and Implementation 50

SemanticProximityCriterionScorer

The SemanticProximityCriterionScorer is a more complex scoring implementation. It
considers use cases and aggregations in a ERM. To calculate the score, the scorer uses
an intermediate score summing up occurrences of the following conditions for the na-
noentities A and B:

READ ACCESS A and B are both read in the same use case.

WRITE__ACCESS A and B are both written in the same use case.

MIXED_ACCESS One of A or B is read and the other one written in the same use
case.

AGGREGATED_ENTITY A belongs to an entity which has an aggregation to B’s
entity in UML diagram.

For each occurrence a number is added to the intermediate score of the AB relation.
Currently the following numbers are implemented:

SCORE_WRITE ACCESS: 10
SCORE_READ_ACCESS: 3
SCORE_MIXED ACCESS: 3
SCORE_AGGREGATION: 1

More important than the actual numbers are the relative differences to each other which
define the importance of the occurrences. Literature for Semantic Proximity listed in
Chapter 4 suggests that one of the important coupling criteria is, which nanoentities are
changed by the same use cases. We therefore set the default values above in a way that
emphasizes common write occurrences the most.

To reduce the intermediate score to the criterion score, the following rules are applied:

e The top 10% of all relations with the highest intermediate score receive a criterion
score of 10.

o The lowest intermediate score of the top 10% defines the reference intermediate
score. The other 90% are calculated relatively to that reference and receive a
criterion score between 0 and 10.

The calculation for the lower 90% works as following:

referencelntermediateScore

. =10 (6.1)

referencelntermediateScore

x = (6.2)
10

intermediateScore o

X

criterionScoreag =

6. Service Cutter Design and Implementation 51

Both the numbers counted for access or aggregation occurrences and the reduction to the
criterion score have been experimentally evaluated. The algorithm documented here has
proven to produce reasonable results for the example systems but might require further
investigations for other systems.

CharacteristicsCriteriaScorer

Each coupling criterion of type compatibility defines multiple characteristics. The idea
of these criteria is to create services with as homogeneous nanoentities as possible. The
scorer therefore sets negative scores for a relation between two nanoentities having dif-
ferent characteristics.

As an example, the criterion Structural Volatility describes how often change requests
need to be implemented that affect a nanoentity. A nanoentity can have the characteristic
often, normal or rarely. Fach characteristic has a number between 0 and 10 assigned:

Often: 10
Normal: 4 (default)
Rarely: 0

Two nanoentities with different characteristics receive a negative score with the difference
between the numbers. As an example, a nanoentity A with characteristic often and a
nanoentity B with characteristic normal receive a criterion score of —6.

It is important that the highest and lowest number have a difference of 10 to fully use
the range a criterion has to rate a relation.

In this case there is an intermediate value of 4 for the mormal characteristic. In our
experience the often changing nanoentities are the most interesting and have the highest
impact on service decomposition. With using the number 4 instead of 5 for normal we
put an emphasis on often as the differences to these characteristics become bigger.

To improve usability, we introduced default characteristics so that a user does not need
to define characteristics of all criteria for all nanoentities.

Table 6.4 outlines characteristics of all criteria with their values and defaults.

6. Service Cutter Design and Implementation 52

Table 6.4: Criteria characteristics with values and defaults.

Criterion Characteristics
Structural Volatility Often 10

Normal 4 (default)
Rarely 0
Consistency Criticality High 10 (default)
Eventually 4

Weak 0
Availability Criticality Critical 10

Normal 4 (default)
Low 0

Content Volatility Often 10
Regularly 5 (default)
Rarely 0

Storage Similarity Huge 10

Normal 3 (default)
Tiny 0

Security Criticality Critical 10
Internal 3 (default)
Public 0

After covering the algorithm evaluation and scoring process, the next section documents
the implementation and design of the prototype.

6.6 Prototype

This section introduces the prototypical implementation of the Service Cutter.

6.6.1 Design

The Service Cutter is divided into two processes:

1. The Editor is a web application and handles all user interactions.

2. The Engine runs in a separate Java Virtual Machine (VM) and offers the capability
to upload nanoentities and coupling information. This data is then used to calculate
candidate service cuts.

6. Service Cutter Design and Implementation 53

We decided to split the Service Cutter into a web application and a separate Engine
so that the Engine can be reused in a different context without the overhead of a fully
fledged UL

Figure 6.11 introduces the important components and packages of the Service Cutter.

1 1 1

<controller> <controller> <controller>
Importer CriteriaBrowser Solver

v e \
]]
<package> <package> <package> |
Importer CouplingCriteria Solver
g ol Algorithms
"_I
<package> | ..:
: . . Analyzer
v o e :
] T e v
<package> [=
package> -
Model DU SR <package> H
Scorer <

Figure 6.11: Components and packages of the Service Cutter.

The FEditor consists of three components:

Importer is used to upload nanoentities and user representations into the Engine.

CriteriaBrowser is used to display all implemented coupling criteria and their descrip-
tion.

Solver is used to parametrize the decomposition calculations and to visualize candidate
service cuts.

The Engine offers a RESTful HT'TP web service for all Editor components. It contains
the following packages:

Importer contains the importer endpoint and maps user representations to the Engine
internal model.

6. Service Cutter Design and Implementation 54

CouplingCriteria contains an endpoint for the coupling criteria data to be displayed
in the CriteriaBrowser.
Solver runs the scorers to create the graph, starts the algorithm, processes the result
with the analyzer, and exposes the candidate service cuts on a web service.
Analyzer analyzes the candidate service cuts to determine use case responsibilities and
published language between the candidate services.

Scorer calculates the scores between nanoentities based on the user’s system specifica-
tion and coupling criteria.

Model contains the coupling criteria catalog, all nanoentities and coupling data. The
sub package repository encapsulates all interactions with the database.

The next section outlines the model that is used to persist user systems and the coupling
catalog. This data is owned by the Engine but imported and utilized by the Editor
component.

6.6.2 Model

Figure 6.12 describes the model used to persist a system with its nanoentities and the
coupling catalog. All classes are persisted to a relational database using Java Persistence
API (JPA) annotations and Hibernate[59].

6. Service Cutter Design and Implementation 55

(= Nanoentity
UserSystem .
® = -nanoentities B id: Long
o ik Long o name: Siring
o name: String o confext: Siring
o userSystent UserSystem

-couplinginstances

InstanceT
(2 Couplinginstance e ype

S\}FLEE_GQSE nstanceType
LFLATEMCY _USE CASE InstanceType
S\:-FS.-f'\r'JE_EI\l'I'IT‘u’: InstanceType

%of AGGREGATION: nstanceType

S cHaracTERETIC: nstanceType
S\}FHEI_ATEIIJ_GRGLF'. nstanceType

o id Long
-instanceType

o name: Siring

o userSystent UserSystem

o nancentities: List=Manoeniity =

o secondMancentities: List<Manoentity >

-couplingCriterion

-characteristic

{(® CouplingCriterion

{3 CouplingCriterionCharacteristic

— o ikt Long
a it Long -couplingCriterion

. o code: Siring
o name: Skring

. o name: Siring
o w eight: Infeger

. o description: Siring
o isDefaul boolean

o type: CouplingType

Figure 6.12: Model of a user system and the coupling catalog.

e For each imported system, a UserSystem and a set of Nanoentity and CouplingIn-
stance objects are created.

e The imported user representations are transformed into objects of the class Cou-
plingInstance. The assigned InstanceType is used to keep track of the originating
user representation.

e A coupling instance is linked to a CouplingCriterionCharacteristic for a coupling
criterion of type compatibility. Otherwise this relation is null.

e CouplingCriterionCharacteristic and CouplingCriterion only change in case of amend-
ments to the coupling criteria catalog.

6. Service Cutter Design and Implementation 56

6.6.3 Technology

We followed the recommendation of our industry partner and used Spring Boot[68] and
JHipster[60] as the underlying frameworks.

The main reasons were:

e Our industry partner uses them successfully.

e Spring Boot is considered state-of-the-art for Spring based applications nowadays.

o JHipster is based on established technologies that are partially already familiar to
us. Furthermore, it provides a code generator and samples. This can noticeable
speed up development especially in the prototyping area.

o We were able to implement a technological proof of concept in a few days and did
not face major obstacles.

6. Service Cutter Design and Implementation 57

The Service Cutter is implemented as a
three tier application.

The first tier is the web browser of the user.
The application is based on AngularJS[43]
and uses a template based on Bootstrap[47].
A RESTful HTTP interface provides access
to the Editor tier. Graph visualizations are
implemented using the vis.js library[76].

The Editor component is a web application
based on the JHipster[60] framework. It pro-
vides the user the possibility to import sys-
tem information using a JSON upload and
feeds this information into the Engine. All
security and user interface aspects are han-
dled in this layer.

The Engine is the isolated component that
holds the logic to calculate candidate ser-
vice cuts. It is based on Spring technolo-
gies and provides RESTful HT'TP interfaces.
The Engine does not provide any security
measures and it is therefore necessary to re-
strict access to the Engine. We recommend
to achieve this using a Docker[51] internal
network as described in Section 6.6.5.

Figure 6.13: Technology Overview

6.6.4 RESTful HTTP Interfaces

This section documents all RESTful HTTP interfaces provided by the Engine. The
Editor is built on these interfaces, but they could also be used by another user interface.

The required JSON formats are specified by JSON Schemas[61]. The schemas can be
found in the JSON __Schemas folder. An example for a JSON Schema is listed in D.2,
defining the export format of candidate service cuts.

6. Service Cutter Design and Implementation

58

Table 6.5 outlines all provided RESTful HT'TP interfaces and the required JSON speci-

fications:
Table 6.5: RESTful HTTP Interfaces
Title Path Method | Request Response
Schema Schema
importERM /engine/import/ POST 1_erm 4__importResult
import /engine/import/{systemId}/ | POST 3_nanoentities | 5 _userSystem
Nanoentities nanoentities/
importUser /engine/import/{systemId}/ | POST 2_userReps 4__importResult
Representations userrepresentations/
getSystems /engine/systems/ GET - 5_userSystem
getSystem /engine/systems/{systemld}/| GET - 5_userSystem
createSystem | /engine/systems/ POST "name" 5_userSystem
solveSystem /engine/solver/{systemlId} POST 6__solverConfig| 7_solverResult

These JSON files can either be uploaded through the Editor or directly, for example by
using the Linux bash:

curl —-i —-H "Content-Type:

application/json" —-X POST

http://localhost:8090/engine/import/{systemId}/userrepresentations
—-d booking_2_ user_ representations. json

While we leverage the HI'TP protocol and its verbs, the interfaces are modeled as oper-
ations rather than resources. To comply with level 1 and 2 in the Richardson Maturity
Model[15] for RESTful HTTP, the interfaces could be refactored to represent resources
rather than operations.

6.6.5 Deployment

Technically the Service Cutter can be operated on a single server providing a relational
database and a Tomcat web server. However, we developed a more sophisticated infras-
tructure aligned with modern standards which is presented as follows.

« Every components runs in an isolated Docker[51] container.

o Docker Compose[52] is used to connect the Docker containers.

o The Engine and the Editor operate in an embedded Tomcat[45] server as provided
by Sprint Boot web.

o The Engine and the Editor both require a relational database. As Hibernate[59]
and Liquibase[63] are used, all database related code is vendor agnostic. However
we only tested the Service Cutter on Postgres 9.4[66].

6. Service Cutter Design and Implementation 59

Docker provides a layer of abstraction between the application and the underlying oper-
ating system. It uses resource isolation features of the Linux kernel to avoid the overhead
of starting and maintaining full virtual machines. We implemented our deployment using
Docker as it provides us with the ability to install the application components in isolated
containers on a single machine with only a few command line statements.

The Docker Compose definition is attached in Appendix D.1.

6.6.6 Information Security

The web application is secured using an authentication and authorization implementa-
tion based on Spring Security[71]. Any other internal components such as the database
or web services are hidden behind the server’s firewall and therefore do not need any
special security measures.

The uploaded data models are shared amongst all registered users.

After covering the important design and implementation aspects, the next chapter dis-
cusses the provided results.

7. Discussion

This chapter discusses the outcome of the thesis. It starts with usage scenarios and
benefits of the Service Cutter and concludes with a requirements assessment.

7.1 Usage Scenarios

We identified two usage scenarios suitable for the Service Cutter.

Mbonolith First

The most likely scenario with existing software is the transition from a monolith to a
service oriented architecture. Martin Fowler recommends to use this approach for every
project and to not start a project with services[14]. The Service Cutter is able to identify
candidate service cuts with a given number of services. With the algorithm set to Girvan-
Newman and the number of services to 2, the Service Cutter suggests a first service to
be extracted from the monolith. by iteratively increasing the number of services the user
can plan his process towards a service oriented architecture.

Greenfield Scenario

The other scenario is the greenfield scenario when the system is not yet developed but
partially specified and designed. The requested user representations can be used as check-
list during requirements engineering and design processes. Specification artifacts are then
loaded into the Service Cutter and candidate service cuts can be the basis for a discussion
between architects. Once agreed on service cuts, the assigned use cases and published
language help to implement the services and their interfaces of each other.

60

7. Discussion 61

7.2 Benefits

The Service Cutter offers the following benefits:

By requesting different user representations, an architect is challenged to analyze
which user representations and characteristics are relevant in his system. He might
use the user representations as a checklist for requirement engineering.

The user representations and coupling criteria can further be used to educate junior
architects or students on the driving forces of service decomposition.

The Service Cutter provides candidate service cuts based on the defined user rep-
resentations. With these candidate service cuts the architect’s expectations of the
number of services and their definition is either verified or challenged.

The greenfield scenario as well as an iterative approach from moving from a mono-
lith to service orientation are supported by the Service Cutter.

Use cases are assigned to their responsible service. The published language be-
tween services is displayed in order to assist the development of services and their
interfaces to each other.

By storing the candidate service cuts, architectural decisions can be persisted and
documented (not yet implemented).

7.3 Requirements Assessment

This section assesses the developed solution based on the defined requirements. The two
sample system as described in Appendix B as well as the implemented Service Cutter
itself serve as the test scenario.

All requirements are rated with a rating from 1 — 3.

1 The requirement is fully satisfied.

2 The requirement is partially satisfied.

3 The requirement is not satisfied.

7. Discussion

62

7.3.1 Functional Requirements

Table 7.1 assesses the provided solution against the defined functional requirements

described in Section 5.2.

Table 7.1: Assessment of functional requirements.

Requirement

Rating

Assessment

Coupling Criteria

1

All coupling criteria have been implemented in the
Service Cutter.

User Representa- | 1 All required user representations are supported by

tions the importer of the Service Cutter.

Priorities Priorities are built into the scoring process.

Candidate Service The Service Cutter visualizes a candidate service cut

Cuts using a chart. The candidate services can be exported
in a JSON format documented in Appendix D.2

Published Language | 1 The published language is visualized when selecting
a service in the visualization.

Hard Architectural | 2 This feature is not explicitly implemented but par-

Decisions

tially given by non-deterministic algorithms as dis-
cussed in Section 6.4.3

7. Discussion

63

7.3.2 Non-Functional Requirements

Table 7.2 assesses the provided solution against the defined non-functional requirements

described in Section 5.3.

Table 7.2: Assessment of non-functional requirements.

Requirement

Rating

Assessment

Usability

2

We reviewed the user interface within the project
team but did not conduct usability tests.

Simplicity

A simple analysis can be performed with 5 mouse
clicks.

Performance

The sample systems can be decomposed in not more
than two seconds. Extensive performance tests have
not been conducted due to time budget constraints
as decided with our stakeholders. Section 9.2.9 lists
this as a future activity.

Logging,
Deployment

Logging is based on SLF4J and a deployment based
on Docker is implemented.

Fault Tolerance

All errors are handled and occurring errors are
logged. The Service Cutter has remained robust even
if exceptions or errors occurred. The user receives de-
tailed validation feedback if a problem occurs while
uploading JSON files.

Maintainability

The implementation is based on two services (Edi-
tor and Engine) both built with suitable application
layers. Communication between the layers is imple-
mented with RESTful HTTP communication. Open
source tools are used wherever possible. We rate this
requirement as only partially satisfied as the REST-
ful HTTP interfaces do not meet the Richardson ma-
turity level requirements.

State-of-the-Art
Technology

The application is based on the technology stack sug-
gested by our industry partner.

License

The source code has been released under the Apache
2.0 license. The Girvan-Newman algorithm imple-
mentation however is published under the GPL li-
cense. This dependency should be replaced when the
Service Cutter is used in a commercial environment.
Section 9.2.10 lists this task.

After discussing the Service Cutter’s usage scenarios, benefits, and assessing the defined
requirement, the next chapter documents our conclusion.

8. Conclusion

This chapter evaluates the outcome of the thesis with its hypothesis and closes with a
summary and outlook.

8.1 Hypothesis Evaluation

At the beginning of this project we formulated two hypothesizes. We were able to produce
results validating both.

The driving forces for service decomposition of a software system can be as-
sembled in a comprehensive criteria catalog.

We successfully compiled a catalog of 16 coupling criteria that aims to form a compre-
hensive but not conclusive collection.

The catalog helps a software architect to structure driving forces for service decom-
position. The developed criteria may provide a basis for a common language amongst
architects.

Based on the criteria catalog, a system’s specification artifacts can be pro-
cessed in a software to optimize loose coupling between services and high
cohesion within services in a structured and automated way.

In the Service Cutter assessment documented in Appendix B, we tested two sample
applications with the algorithms Girvan-Newman and Leung. Girvan-Newman provided
expected and therefore satisfying results in only one of the two example systems. Leung
on the other hand did not only provide expected service cuts for both systems but
surprised us with suggestions that were unexpected but definitely reasonable.

64

8. Conclusion 65

8.2 Summary and Outlook

The hypothesis could be validated by producing the coupling criteria catalog and the
Service Cutter prototype. Most of the requirements were successfully implemented. The
goals of the initial project definition document in Appendix E could be reached.

The Service Cutter as of now is not a production grade architectural tool but a proof that
our concept of structured and automated decomposition optimization generally works
and is worth further investigations.

Without more sophisticated means to define or import a systems specification the effort
to specify a system is likely to high for an average user. We trust that the great value
to its users will become apparent when further efforts are put in the following aspects:

1. The Service Cutter Prototype should be enhanced to a production ready tool
with graphical user interfaces for defining, editing, and storing a user’s system
specification and candidate service cuts.

2. The Service Cutter should be integrated into a toolkit chain. The input could
automatically be generated from other tools or diagrams and the output used for
code or API generation.

3. Graph clustering algorithms should further be analyzed and optimized. Possi-
ble alternative approaches as documented in Appendix A could furthermore solve
some of the conceptual challenges of the scoring process.

4. The scoring process for the different type of criteria should further be analyzed
and tested. More sophisticated solutions for conceptual challenges like the single
dimensionality problem documented in Section 6.5.1 could improve the accuracy
and meaningfulness of results.

The next chapter describes the proposed improvements in more detail.

9. Future Work

This chapter introduces possible enhancements of the Service Cutter.

9.1 Algorithms and Approach

This section illustrates a series of possible improvements to the algorithms.

9.1.1 Additional Leung Layer

The non-deterministic nature of the Leung algorithm causes the calculation result to
be unstable. This has advantages and disadvantages as outlined in Section 6.4.3. As
an architect, I would expect the Service Cutter to assist me with non-deterministic
algorithms in a way that the possible service cuts are automatically calculated, compared
and rated. This additional layer would allow me to select the best candidate service cut
and help furthermore help to identify hard architectural decisions.

9.1.2 MCL adapter

As outlined in Section 6.4, the MCL algorithm could be used in the Service Cutter as
well.

The reference implementation of the MCL algorithm is provided as a C based command
line tool. With some effort this algorithm could be integrated into the Service Cutter
using Java Native Interface (JNI) or an integration based on text files.

An assessment of the MCL algorithm may produce better results compared to the other
algorithms.

9.1.3 Alternative Algorithms and Optimizations of Existing Algorithms

Our evaluation of suitable graph clustering algorithms was limited to the ones having
a stable Java implementation. Further research may prove that other algorithms are

66

9. Future Work 67

capable of calculating candidate service cuts even better according to the defined criteria
in Section 4.3.

Furthermore, existing algorithms may be improved with optimizations. For instance,
Lancichinetti and Fortunato[21] valuated a set of improved versions of the Girvan-
Newman algorithm as well as a collection of alternative algorithms.

We assume that optimizations of the Service Cutter’s algorithm can be achieved when
the selection is not limited to existing Java implementations.

9.2 Service Cutter Improvements

A set of enhancements of the Service Cutter as a tool may increase its value to the users.

9.2.1 Traceability of User Representations

It is important that the calculated data is presented to the user in a way for him to
understand why the candidate service cuts have been selected. By visualizing the user’s
input on candidate service cuts, the user gets a better understanding of how his input
and definitions affect the suggested decomposition.

Along with the user representations, the scores could be visualized per coupling criterion
so that the user understands the impact of priority changes and input enhancements.
However, this feature should be disabled by default a novice user.

9.2.2 Adjust Suggested Solutions

The architect is able to adjust the solution by moving a nanoentity from one to another
service. He instantly sees the impact of his adjustment as the rating of each coupling
criterion is visualized.

9.2.3 Configurations for Advanced Users
For a normal usage, the Service Cutter provides reasonable defaults which have been

tested with example systems. Advanced users should be enabled to change or enhance
existing characteristics of compatibility criteria.

9.2.4 Configuration through a Questionnaire

The Service Cutter could guide the architect through a questionnaire in order to apply
different presets of characterization defaults or priorities.

9. Future Work 63

9.2.5 Editor for User Representations

To improve usability and reduce the effort needed to define the input for the Service
Cutter, a sophisticated user interface to create and edit user representations should be
built. The user interface should simplify input creation as much as possible. One example
to achieve this is to the ability to define characteristics on entities which are then applied
to all nanoentities of the entity.

9.2.6 Iterative Enhancements

Projects are often implemented in subsequent stages. The selected service cut of the
first iteration influences the design decision of the second iteration. The Service Cutter
therefore should allow the user to load a previously calculated service cut into the new
model.

One solution would be to persist candidate service cuts and the used priorities.

9.2.7 Candidate Cuts Comparison

To compare two different candidate service cuts, a feature should be added to visually
illustrate differences between two solutions.

A history or back and forward buttons would be other features to help compare different
solutions. Changes to parameters could be undone and earlier calculated results could
be revisited.

9.2.8 Candidate Cuts Grading

We suggested a questionnaire to assess candidate service cuts in Section 4.3. This dis-
tinction could automatically be performed by the Service Cutter and visualized using a
indicator similar to a traffic light.

9.2.9 Performance Tuning

The initially defined performance requirements were descoped to allow more functional
enhancements. We assume that the Service Cutter should be able to support the re-
quired volumes as outlined in Appendix D.3. The scorer implementation as well as the
algorithms need to be verified with a large enough data set to confirm the scalability of
the Service Cutter.

9. Future Work 69

9.2.10 Licenses of Libraries

The implementation of the Girvan-Newman algorithm[56] is licensed under the GPLv3.
It has to be analyzed whether the Service Cutter can be used in a commercial context.
Otherwise the implementation of the Girvan-Newman algorithm has to be replaced with
an alternative implementation.

9.3 Toolchain Integration

Providing interfaces to existing tools lowers the cost of using the Service Cutter consid-
erably. We therefore recommend to develop integrations with popular software develop-
ment tools.

9.3.1 Adapters for the Input Format

Writing the required input is a significant effort. The model containing nanoentities and
their relations could automatically be parsed from different sources. Adapters could be
written for an Object-Relational Mapping (ORM) configuration, a database schema,
or Unified Modeling Language (UML) diagrams provided by tools like the Enterprise
Architect[54].

9.3.2 Use Solution as a Basis for Working Software

As the Service Cutter has sophisticated information about the usage of nanoentities in
use cases, it is able to generate the APIs used to communicate between services.

Depending on the communication layer used to communicate between services, these
APIs look differently. In a messaging based system, the Service Cutter could generate
a set of messages or events needed to communicate between services. When services
interact by RESTful HTTP interfaces, the Service Cutter could generate Swagger|73]
API definitions for the resources which need to be part of the published language.

9.4 Scoring

The developed scoring process works well for our test scenarios. However other systems
might require further enhancements.

9.4.1 Better Handling for Separations

As introduced as single dimensionality in Section 6.5.1, we mapped coupling of type
compatibility and constraints to negative scores. Once all coupling criteria have been

9. Future Work 70

processed, we remove all edges with a negative total score. This approach retains infor-
mation about the coupling in a system. Finding a solution for the single dimensionality
problem would lead to more accurate candidate service cuts.

9.4.2 Implement Criteria of Type Communication

As part of this project we only implemented 14 out of 16 identified coupling criteria.
The following two criteria are solely described as part of the decomposition model in
Chapter 4.

o Mutability defines whether a nanoentity is mutable or immutable.

e Network Traffic Suitability illustrates the network traffic implications when this
nanoentity is exposed to a remote interface.

Both criteria of type communication do not describe which nanoentities should or should
not be modeled in the same service, but which nanoentities are more suitable for being
exposed as published language and therefore used in intra service communication. For
immutable data, consistency is not an issue and it is therefore simpler to handle and
more suitable for published language then mutable nanoentities. Similarly, nanoentities
that are frequently accessed and need high storage resources are less suitable for being
exposed on the network.

If a nanoentity needs to be exposed is defined by use cases and which service is respon-
sible for which use case. The communication criteria require that the use case accessing
unsuitable nanoentities are owned by the same services as the nanoentities.

9.4.3 Calculate Content Volatility from Use Cases
The current implementation requires a characterization of nanoentities by their content
volatility. If use cases would provide information of how frequently they’re executed, the

content volatility of nanoentities could be calculated out of use cases. This would reduce
the user’s effort to specify his system.

9.5 Conceptual Refinements

Besides the technical enhancements, we also collected a set of conceptual improvements.

9.5.1 Logical and Physical Services

As outlined in Section 3.1, services can be analyzed from different views like the logical
or physical view. Udi Dahan describes the confusion of these views as one of the common
pitfalls in implementing SOA[7].

9. Future Work 71

In Section4.1 we categorized the coupling criteria into the views Domain, Quality, Phys-
ical, and Security. These views should be further analyzed and integrated in the Service
Cutter to improve an architect’s understanding of different views on his system and the
definition of a service. For example, service decomposition could start with candidate
bounded contexts by only considering domain criteria. These bounded contexts would
further be split into physical services by taking the other views into consideration.

9.5.2 Caching

Caching is data redundancy that is used to reduce the cost of coupling between services.
By the means of use cases, the Service Cutter has knowledge of which nanoentities
need to be shared between services and, if the use case contains frequency information,
even how often it needs to be shared. The Service Cutter could therefore suggest to the
architect where caches would be appropriate.

9.5.3 Document Architectural Decisions

Architectural decisions capture key design issues and the rationale behind
chosen solutions.[39]

Documenting architectural decisions is a significant documentation artifact of every long-
term software project. In order to retrace architectural decisions taken with help of the
Service Cutter, important solutions enhanced with discussion notes could be saved persis-
tently. These notes could be captures as free text, Y-Templates[40] or other architectural
decision templates!.

9.5.4 Relationships between Coupling Criteria

A relationship between coupling criteria like the following might have significant impact
on service decomposition:

Persisted nanoentities with huge storage requirements should not be placed in the same
service as nanoentities with high consistency requirements as they are handled using
different database technologies.

Such a relationship should be incorporated in the Service Cutter’s decomposition algo-
rithm. Another way of integration would be to present a warning to the user whenever
a critical combination of characteristics appears in a candidate service cut.

'0. Zimmermann et al compiled a comparison of seven publicly available decision templates[42, p. 3]

A. Decomposition Approach
Evaluation

During early feasibility tests with graph clustering, we encountered significant problems
as documented in the next section. As consequence of these results, we conducted a fea-
sibility assessment with a professor of mathematics on the graph based approach. Out of
the feasibility assessment, two additional approaches on how the Service Cutter can solve
the decomposition problem were defined and are discussed in this chapter. Nevertheless,
the conclusion section states how challenges in these approaches and further research on
clustering graphs led us back to follow the graph based approach.

A.1 Graph Clustering Problems

At first, the clustering algorithm evaluated documented in Appendix C did not contain
the Leung algorithm as this has been found later during the project. The two candi-
date algorithms were MCL and Girvan-Newman. We did a feasibility test using a small
booking sample containing three entities:

Customer Entity containing address, accountNr, creditCardNr, and name.
Article Entity containing articleName, price, and serial.
Booking Entity containing totalPrice, paymentDate, bookingDate, and bookingState.

72

A. Decomposition Approach Evaluation

tﬂtem@rice

. o paymentDate
bookingDat
ookingDate Service

\
.

0 bookingState

73

H
| creditCard serial
firstname

accountNr

Service 1

articlieName

street

price
Figure A.1: Expected output for the booking example.

To keep the sample simple, we only added information for the Lifecycle € Identity

Commonality criterion, so that the output is expected to show exactly the entity borders
as shown in Figure A.1.

A. Decomposition Approach Evaluation 74

. paymentDate
accounthr
0 [|
creditCard . ERdices
paymentBate
[
name
L
Service ;!al orice
. Service
. booking Date
ity .
firstname
. stnam: .
bookingState . totsl Price
bookingState
|
price
[
. apticleMamea
seria !
a
bookingDate
Slervice
|
paymentDate
|
s O m =
. . totalPrice sty girast
bookingState
|
Service pnoe .
. firstname
accounthir Sarvice
|
articleMame
|
creditCard .

name

Figure A.2: Booking sample with the MCL algorithm.

The MCL algorithm’s result for this example is shown in Figure A.2. This does not
match the expectations as nanoentities are attached to multiple services. This violates
the distinct clusters requirement. A nanoentity should be assigned to one and only one
service.

The distinct clusters requirement is satisfied by the original MCL algorithm written in
C. We therefore assume that this is an implementation problem of the Gephi plugin[57].
A solution to this problem would be to write a Java wrapper for the C implementation
as described in Section 9.1.2.

A. Decomposition Approach Evaluation

Booking.bopking State

1

Booking. bookingD ate |

\

1

\

\

\

Senvice J Service M CustD’m%Qtname
. Service A
Article serial
Service H
Article price

Service | Custo meﬂgﬂ itC ard

\
\,

N
=

Booking paymentDate
Service K

Custoer.name i
9!"' Sfrwc:e L
~—_ / /
Cust i
ustomer. ancnumN:H. / /
Service E .

i
Booking totalPrice
Service B
Customer. city

Service F

Service D

Service

Customer street
Article. articlieName .

Sernvice G

Figure A.3: Booking example with the Girvan-Newman algorithm.

Figure A.3 shows the unsatisfying result provided by Girvan-Newman. By reasons of
these unexpected results, we consulted a professor of mathematics which led to the
alternative approaches described in the next Sections.

A. Decomposition Approach Evaluation 76

A.2 Approach #2: Rating of Possible Service Cuts

The idea this approach introduces is to create a set of all possible service cuts and rate
the cuts isolated per coupling criteria. The approach is illustrated in Figure A.4.

|

(Score per

Criteria
Service Cut 1 Service Cut 1 l

All cuts 1 Scoreper

> receive a Criteria
Service Cut 2 ‘)’ score per Service Cut 2
v Criteria based l
on CC Data

; ’?
| Scoreper v
_ Criteria Best Total
Service Cut 3 | evaluate Service Cut2J e

|

4

Data Fields m Service Cut 3

|

— A '
e 1
I 5;“_;5 per Criteria
rena R
Service Cut 4 1 Service Cut 4 Priorities
I l
N
[
! Score per
I Criteria
Service Cut 5 I Service Cut §
N I \ l
1

f 5 \
Coupling Criteria

FI

rocessor % \

use

Coupling Criteria
Processor § [—use

umML| INBYYT ser
Use Cases| 2
L—=lISE Security

Coupling Criteria
Processor

2

_ J

Figure A.4: Approach #2: Service Cut Rating

This approach is processed in three steps:

Partitioning Based on the nanoentities, a set of all possible candidate service cuts is
calculated. This includes every theoretically possible service cut for any number of
services. For practical usage, this step needs to be optimized.

Assessment For all coupling criteria a scorer assesses all service cuts with a score
describing how well the criteria’s requirements are met. The score is a number
between 0 and 10, while 10 implies that all requirements are perfectly satisfied.

Evaluation The user optionally defines priorities how important each criteria is for his
system. The priorities are defined with approximately exponential numbers like

A. Decomposition Approach Evaluation 77

the Fibonacci sequence. These priorities are applied on the service cut scores. The
resulting best candidate cut is then presented to the user.

A.2.1 Discussion

An advantage of this approach is that each relevant step is clearly separated and can
thus be analyzed, debugged and visualized better than in the graph based approach.
The assessment and score calculation is done separately for every cut and for every
coupling criteria. Each criteria scorer scores candidate cuts with a uniform scoring range.
As candidate service cuts do not need to be constructed but only rated, the single
dimensionality problem described in Section 6.5.1 does not apply.

The weak spot is the partitioning process. Theoretically every possible set of services
where each nanoentity is contained in one and only one service is a candidate cut. In
mathematics this is described as the partition of a set[17] problem. The Bell number B,
defines the amount of possible partitions:

n
a0

J=0

For the Service Cutter, n is the number of nanoentities. The number of possible service
cuts for n = 20 nanoentities is 51/724'158'235'3721.

The Bell number includes cuts for 1 —n number of services. In the context of a software
system only certain numbers of services are realistic. The Stirling numbers of the second
kind calculate the Bell number for a given number of sets k:

(1= nxeo= ()

For n = 20 nanoentities and k = 4 services the equation results in 45'232/115’901 possible
cuts. For k = 6 the result is 4'306'078'895'384.

During a discussion with our industry partner and supervisor, we decided that the Ser-
vice Cutter should be able to process system models with up to 2000 nanoentities. We
therefore concluded in the same meeting that this approach is not attainable without a
heuristic attempt of finding a small set of relevant candidate cuts.

A possible heuristic approach is to take into account one or a few coupling criteria
information about the system to find service candidates. A simple example would be to
only analyze cuts where nanoentities of the same entity are not split across services so
that only entities and not its nanoentities need to be considered.

"We do not print the number for the required 2000 nanoentities for lack of space in this document.

A. Decomposition Approach Evaluation 78

As we tried to find a heuristic approach to calculate candidate cuts, we discovered a new
idea for the clustering algorithm described in the next section.

A.3 Approach #3: Greedy Service Construction

While analyzing the decomposition problem we realized that finding a good number
of services is one of the key challenges. Cohesiveness criteria are mainly satisfied by
consolidating nanoentities in one service while compatibility criteria request exactly the
opposite, namely the separation of nanoentities. Figure A.5 illustrates this dilemma.

QAW
WG >
D)0) compativiity) Conesiveness

Criteria f Criteria
Nanoservices Monolith

Figure A.5: Finding a good number of services is a key challenge of service decomposition.

To simplify the problem, we assume the number of services is given by the user and does
not need to be computed. Very often an architect has a reasonable assumption about
the number of services suitable for his system.

Given the number of services, the services can be imagined as empty boxes that need to
be filled with nanoentities. The boxes are filled by construction and optimization steps.
In every construction step, one nanoentity is assigned to a box by means of a greedy
algorithm.

Construction Step One nanoentity is taken from an unordered list of all unassigned
nanoentities and put in the best suitable service. The suitability is calculated by
the criterion scores between the selected nanoentity and the nanoentities already
assigned to a service.

Such greedy algorithms often end in a local maxima and not in the global maxima that
represents the optimal solution. In every step the assignment decision is only based on
the already assigned nanoentities. Assignments by former steps cannot be changed. To
improve this behavior, the algorithm should process optimization steps between or after
construction.

Optimization Step One service with already assigned nanoentities is randomly cho-
sen. Within the service, the score from each nanoentity to all its neighbors is

A. Decomposition Approach Evaluation 79

calculated to determine the least suitable nanoentity in a service. This nanoentity
is taken out of the service and put back on the list of unassigned nanoentities.

The algorithm starts by assigning the first nanoentity to a random service and then
alternates between construction and optimization stages. It finishes either after a given
time, by the user stopping the optimization or by detecting that no further optimization
is possible. This is detected when nanoentities taken from services in an optimization
step are put back to their original service during the construction step. To finish the
algorithm all nanoentities must be assigned to a service.

We have not proved that this algorithm solves the desired problem. The approach fo-
cuses only on cohesion within services but does not take coupling between services into
consideration. Whether these two requirements build a duality, meaning that optimizing
one automatically optimizes the other, is to be analyzed. However, we did not continue
to investigate in this approach due to new findings on graph clustering described in the
next section.

A.3.1 New Findings on Graph Clustering

Parallel to finding new approaches we continued to investigate the graph clustering.

By analyzing the Girvan-Newman algorithm documented in Section 6.4.1, we were able to
identify the problem encountered with the booking sample. As the sample only provides
Lifecycle & Identity Commonality data, every pair of nanoentities in the graph was either
directly or not connected at all. The calculated edge betweenness, which Girvan-Newman
is based on, is therefore equal for all edges in the graph as every shortest path only passes
one edge. The Gephi[55] implementation of Girvan-Newman then consequently removes
all edges in the first iteration leaving every nanoentity isolated which then results in one
service per nanoentity. Adding only one more information like nanoentity characteristics
or use cases solved this problem.

Through further research on the topic we found the algorithm defined by Leung imple-
mented in the GraphStream[58] project and integrated it into the Service Cutter. First
tests using the booking sample provided the expected results.

A. Decomposition Approach Evaluation 80

A.4 Conclusion

While all approaches possibly lead to the desired results, the new findings on the Girvan-
Newman and Leung algorithms promised the best results with adequate effort. Rating
possible service cuts or heuristic construction of services would both require greater
effort. Together with our stakeholders we decided that the effort is not worth taking,
considering that the graph clustering provides reasonable results.

We furthermore implemented a warning in the Service Cutter should a user provide
input leading to the faulty behavior of Girvan-Newman as shown in Figure A.6

Sarvkee L e

Boaoking ot Frice

Alert:The Girvan-Newman algorithm has problems finding services from the input data.
Flease add more data to describe your system or change to Leung algorithm.

Figure A.6: Service Cutter shows a warning for faulty Girvan-Newman results.

B. Service Cutter Assessment

We used two example systems to test the Service Cutter. After defining the input used
to describe the systems, we discussed and documented our expectations on how service
decomposition of the systems would make sense from our experience. In order to rate
the candidate service cuts provided by the service cutter we defined three categories of
cuts:

Excellent Service Cut The cut is not the way we expected it but we find reasons why
the cut makes sense from an architect’s perspective. It is therefore improving our
own view of the analyzed system.

Expected Service Cut The cut is exactly the way we expected it.

Unreasonable Service Cut The cut is not as we expected it and we do not find
reasons why the cut would provide any benefits to a systems architecture.

To assess the Service Cutter’s output, the following language is used:

e An excellent output contains zero unreasonable service cuts and at least one ex-
cellent service cut.

e An good output contains zero unreasonable service cuts.
e An acceptable output contains at most one unreasonable service cut.

e A bad output contains two or more unreasonable service cuts.
We evaluated the service cuts of the following test systems:

1. For the fictional Trading System we engineered requirements based on our experi-
ence with similar software.

2. For the Cargo Tracking System we extracted the requirements from the existing
application.

We therefore tested the Service Cutter once with forward- and once with reverse-engineering.

The following sections present our test results in detail.

81

B. Service Cutter Assessment 82

B.1 Trading System

We developed the Trading System as a fictional example based on personal experience
with similar systems. Its goal is to include various different coupling aspects in a rather
small model.

The Trading System is an application one might find in a typical Swiss private bank
offering its customers the ability to manage their stocks portfolio.

The main focus is to buy or sell stocks at a specific price (Order.triggerPrice) using
an order.

Prices are frequently imported from a market data provider and upon import of a
price, all orders are checked for orders that can be triggered.

When an order is executed, an instruction is sent to the market to purchase or sell
the stocks. The PaymentInfo contains all necessary information to do so.

News are imported from an external provider and are linked to a specific stock.
They provide valuable, contextual information when using the system. However
traders and customers can easily fall back to any online source should this infor-
mation not be available.

Recommendations are suggested to the user of the system based on his existing
portfolio.

Figure B.1 shows a domain model of the Trading System.

B. Service Cutter Assessment 83

Paymentinfo AccountOwner
cashAccount : String address : String
NaturalPerson
name : String
Company
companyName : String|
Instruction Order
Acount Recommendation
swiftMessage : String posted : Date
released : Date expires : Date number : Long description
triggerPrice : Double l&—| lo—
executed : Boolean
type : OrderType (Buy/Sell)
amount : Long

{

Price Stock Position

dateTime : Date identifier : String balance : Long

amount : Double [&&—————<>| name : String

currency : String

News

title : String
text : String
image : Image (Binary)

Figure B.1: Trading System Class Diagram

The following ten use cases describe the supported functionality of the application.

1. Post Order
o Nanoentities written: Order.posted, Order.expires, Order.triggerPrice, Or-
der.executed, Order.type, Order.amount
o Nanoentities read: Account.number, Stock.identifier, Stock.stockName
2. Instruct Order
e Nanoentities written: Instruction.instructed Time, Order.executed, Position.balance
o Nanoentities read: PaymentInfo.cashAccount
3. Import Price and Check for Due Orders (Technical)
o Nanoentities written: Price.dateTime, Price.price, Price.currency
o Nanoentitiess read: Order.triggerPrice, Stock.identifier

4. Read News

e Nanoentities written: -
o Nanoentities read: Stock.identifier, News.title, News.text, News.image

B. Service Cutter Assessment 34

5. Import News (Technical)
e Nanoentities written: News.title, News.text, News.image
o Nanoentities read: Stock.identifier

6. View Recommendations

o Nanoentities written: -

e Nanoentities read: Account.number, Recommendation.description, Stock.identifier,
Stock.stockName

7. Suggest Recommendations (Technical)

o Nanoentities written: Recommendation.description
e Nanoentities read: Account.number, Stock.identifier, Stock.stockName, Posi-
tion.balance

8. Create Account

o Nanoentities written: Account.number
o Nanoentities read: AccountOwner.address, NaturalPerson.name,
Company.companyName
9. Create Account Owner
e Nanoentities written: AccountOwner.address, NaturalPerson.name,
Company.companyName
e Nanoentities read: -

10. View Portfolio

o Nanoentities written: -

o Nanoentities read: Account.number, Position.balance, Stock.identifier,
Stock.stockName, Order.triggerPrice, Order.amount, Order.posted, Order.expires,
Order.executed, Order.type

In addition to the use cases, we defined the following characteristics.
Security Criticality

e Critical: AccountOwner.address, NaturalPerson.name, Company.companyName

e Public: Stock.identifier,Stock.stockName, Price.dateTime, Price.price, Price.currency,
News.title, News.text, News.image

Content Volatility

e Often: Price.dateTime, Price.price, Price.currency

e Rarely: AccountOwner.address, NaturalPerson.name, Company.companyName,
Account.number

Consistency Criticality

B. Service Cutter Assessment 85

e Eventually: Price.dateTime, Price.price, Price.currency
Storage Similarity
e Huge: News.image
Structural Volatility
e Often: Recommendation.description
Availability Criticality
e Low: News.title, News.text, News.image, Recommendation.description

Furthermore, all default characteristics as documented in Section 4.2 are taken into
account.

B.1.1 Expected Service Cuts

From our experience in software architecture we expect the Service Cutter to decompose
the Trading System into the services presented in Figure B.2.

Order Service Paymentinfo AccountOwner Customer Service
cashAccount : String address : String

NaturalPerson

name : String
V\ Compan

companyName : String|

Recommendation Service

Instruction Order
Acount Recommendation
swiftMessage : String posted : Date
released : Date expires : Date number : Long description
triggerPrice : Double le—| lo—

executed : Boolean
type : OrderType (Buy/Sell)
amount : Long

Price Service \L
Price Stock Position
dateTime : Date identifier : String balance : Long

amount : Double [&——< name: String

currency : String

News Service

News

title : String
text : String
image : Image (Binary)

Figure B.2: Trading System expected service cuts.

B. Service Cutter Assessment 86

The following reasons led us to this decision.:

The service Order encapsulates many use cases and contains several entities that
need to be processed with high consistency (Order, Position).

The high content volatility of the entity price led to the isolation of this part into
a separate service Price.

News are not part of the core operations and therefore require lower availability
and security criticality. News images furthermore require a significant amount of
storage. Therefore, we would isolate this into a separate News service.

The recommendation algorithm will be changed frequently. A dedicated Recom-
mendation service allows independent deployment of updated versions. Moreover
recommendations are, like the news, not part of the core operations and require
lower availability.

Security restrictions requires all Personally Identifiable Information (PII) to be sep-
arated from other data. Extracting it into a Customer service allows the architect
to protect this data with additional measures.

B.1.2 Girvan-Newman Algorithm Assessment

Figure B.3 is the suggested cut as calculated by the Service Cutter with the Girvan-
Newman algorithm.

B. Service Cutter Assessment 87

Price.price,
D' i Price dateTime
Sgrvice B

[|
. Metws. title

Price.currency

News text ™

Service,C
NaturalPerson.name
AccounfOwner address Stock sthckName
—
. | o . News.image
.trucﬂnn instructedTime Order riggerPrice

| /
Seryice E ULTEETE . \ / .

| ~@rder.amount

Order typ I
Company companyName) Service, A § Order posted

Position.balance

' Paymentinfo_cashAccount

Account.number
. Stock.identifier
Order.executed

Recommendation description

[]

Service D

Figure B.3: Trading System actual service cuts.

The parameters that produce a cut as seen in B.3 are the following;:

e Coupling criteria priorities: Defaults as defined in 6.5.3
e Number of services: 5

The presented candidate service cuts match exactly the expected services and are there-
fore considered a good result.

Priorities Sensitivity

The candidate service cuts are very stable when changing the priorities. Changing the
two relevant cohesiveness parameters Identity & Lifecycle Commonality and Semantic
Proximity to any combination between XS and L only affects the result when both set to

B. Service Cutter Assessment 38

L. With these priorities the Service Cutter suggests an own service for Stock.stockName
and Stock.identifier instead of Recommendation.description.

An own service for stocks is reasonable as these nanoentities can be categorized as
master data and not transaction data like most of the other nanoentities in the order
service. Requesting 6 number of services with these priorities creates cuts for both the
recommendation and the stock service.

Changing the priority of compatibility or constraint criteria to any value between XS
and L does not affect the resulting cuts. However, the possibility to request a small
number of services gets lost as too many relations between nanoentites are cut if criteria
scoring negative values receive a high priority.

Number of Services
As Girvan-Newman receives a number of services parameter we can analyze how a mono-

lithic architecture would be split up step by step. The resulting services by each param-
eter are listed in Table B.1.

Table B.1: Girvan-Newman cuts of trading system with different number of services.

Number of | Services

services

1 Not supported

2 Customer Service extracted (only sup-
ported with Semantic Proximity L)

3 Price Service extracted

4 News Service extracted

5 Recommendation Service extracted

6 Not supported

7 Payment Service and Instruction Service
extracted

8 Stock Service extracted

9 Stock Service split in Stock.name and
Stock.identifier

Reasonable cuts are presented for up to 8 different services. The results produced by
Girvan-Newman with the Trading System example are considered good.

B. Service Cutter Assessment 39

B.1.3 Leung Algorithm Assessment

Leung produces varying suggested cuts as it is not a deterministic algorithm. The algo-
rithm is therefore harder to analyze, as we can’t determine if changes in results emerge
from changes in priorities or by coincidence.

Generally speaking, the results are similar to those by Girvan-Newman. With the de-
fault priorities, the result matches the one of Girvan-Newman shown in Figure B.3 in
approximately 50%. In the cases it is not matching it suggests fewer service by merging
two services together. This is due to the accidentally created monster clusters described
in Section 6.4.2.

Priorities Sensitivity

As already mentioned we cannot assess the priority sensitivity with Leung. Changing
criteria priorities to values from XS to L has in some cases produced the following results
differing from the one shown in Figure B.3.

e An extra service for PaymentInfo.

e An extra service for Stock.

o An extra service for Account.

e A service combining Account, PaymentInfo and Position.
e A service combining News and Stock.

Except of the last cut we find reasonable justifications for all cases. In fact, combining
PaymentInfo, Account and Position into one service seems to be a considerable suggestion
we have not thought of before and is therefore considered an excellent solution. These
entities are closely related to an account while the other entities in the order service are
more focused on the trading itself.

Number of Services

The number of services suggested by Leung vary between 2 and 7 services. There is a
tendency towards a higher number of services when cohesiveness criteria are prioritized
high and compatibility, and constraints criteria are prioritized low. The same applies
vice versa.

With only small changes to the priorities Leung often suggests 4 or 5 services which
matches with our expectation.

B.1.4 Conclusion

In conclusion we can say that the Service Cutter did suggest the Trading System service
cuts as we expected. For both algorithms results are considered good with only one or

B. Service Cutter Assessment 90

two exceptions where the result was considered acceptable as described above. These are
very satisfying results for a first test of the Service Cutters scoring and algorithms.

The tests furthermore show the advantages and disadvantages of a deterministic algo-
rithm. Girvan-Newman produced very stable results and nicely shows the path from a
monolith to a more service oriented architecture. Leung on the other hand is harder to
analyze but provided us more reasonable candidate service cuts we have not considered
before. Leung also suggests a reasonable number of services while this consideration
completely lies in the responsibility of the user when using Girvan-Newman.

B.2 Cargo Tracking System - Domain-Driven Design Sam-
ple

The Cargo Tracking System is a well known software project created to illustrate the
concepts and patterns described in the DDD book by E. Evans[12]. The DDDSample is
hosted on Github[49] and a short screencast on YouTube[50] outlines its functionality.

The Cargo Tracking System provides a domain with a suitable complexity and, unlike
the Trading System, comes with an already implemented and well reasoned architecture.
With reverse engineering, we extracted the domain model, use cases and some charac-
teristics from the code. The Cargo Tracking implements the following functionalities:

e The main focus is to transport a Cargo from Location A to Location B. Cargos are
created with a Trackingld and specified with a RouteSpecification. Once created,
one of multiple suitable [tineraries is assigned.

e The system calculates suitable [tineraries for a Cargo from existing Voyages each
containing a list of CarrierMovements.

e Once a Cargo is routed, HandlingFvents track the progress of each Cargo’s Itinerary.
A HandlingEvent contains information about the event and references a Cargo on
a specific Voyage and occurs in a particular Location.

e The Delivery of a Cargo informs about its state, estimated arrival time and contains
information whether the Cargo is on track or not.

The extracted domain model is not a one-to-one copy of the domain classes in the code.
The domain classes contain some calculated and therefore redundant information which
have been merged into single nanoentities in the domain model shown in Figure B.4.

B. Service Cutter Assessment 91

CarrierMovement Voyage

departureLocation : Location . voyageNumber: String
arrivalLocation : Location 2

< a
departureTime : Date
arrivalTime: Date >
Voyage
Aggregate
Tocailon HandlingEvent Delivery
unLocode: String type:_Type) lra_nspor\Status: TransportStatus
name: String location: Location misdirected: Boolean
(> completionTime: Date ke J isUnloadedAtDestination: Boolean
registrationTime: Date estimatedArrivalDate: Date
routingStatus: RoutingStatus
Location Handling
Aggregate Aggregate
1
Cargo
RouteSpecification Aggregate ‘
ltinerary Leg

origin : Location Cargo

destination : Location 1 . - stri 1 | itineraryNumber: String 1. loadLocation: Location
arrivalDeadline: Date P el s il S| unloadLocation: Location

loadTime: Date
unloadTime: Date

\ J

Figure B.4: DDD Sample with Aggregates.

Figure B.4 additionally outlines the package and aggregate structure provided by the
DDDSample which is a first indication about service decomposition.

The following use cases describe the supported functionality of the application.

1. ViewTracking

o Nanoentities written: -

o Nanoentities read: Cargo.trackingld, HandlingEvent.type, HandlingEvent.location,
HandlingEvent.completionTime, Delivery.transportStatus,
Delivery.estimated Arrival Time, Delivery.misdirected, Voyage.voyageNumber,
RouteSpecification.destination, Stock.stockName

2. ViewCargos

o Nanoentities written: -

o Nanoentities read: Cargo.trackingld, RouteSpecification.destination, Route-
Specification.arrivalDeadline, Delivery.routingStatus, [tinerary.itineraryNumber

3. BookCargo

B. Service Cutter Assessment 92

e Nanoentities written: Cargo.trackingld, RouteSpecification.origin, RouteSpec-
ification.arrivalDeadline, RouteSpecification.destination

o Nanoentities read: Location.unLocode
4. ChangeCargoDestination

o Nanoentities written: RouteSpecification.destination
« Nanoentities read: Cargo.trackingld, RouteSpecification.destination
5. RouteCargo
e Nanoentities written: Itinerary.itineraryNumber,
Leg.loadLocation, Leg.unloadLocation, Leg.loadTime, Leg.unloadTime

o Nanoentities read: Cargo.trackingld, RouteSpecification.destination, Route-
Specification.origin, RouteSpecification.arrivalDeadline, Location.unLocode,
Voyage.voyageNumber, CarrierMovement.departureLocation,
CarrierMovement.arrivalLocation, CarrierMovement.departureTime, Carrier-
Movement.arrival Time

6. Create Location

e Nanoentities written: Location.unLocode, Location.name

o Nanoentities read: -
7. Create Voyage

o Nanoentities written: Voyage.voyageNumber

« Nanoentities read: -
8. Add CarrierMovement

o Nanoentities written: CarrierMovement.departureLocation,
CarrierMovement.arrivalLocation, CarrierMovement.departureTime, Carrier-
Movement.arrivalTime

o Nanoentities read: Voyage.voyageNumber
9. Handle Cargo Event

e Nanoentities written: HandlingEvent.type, HandlingEvent.completionTime,
HandlingEvent.registrationTime, HandlingEvent.location, Delivery.transportStatus,
Delivery.misdirected, Delivery.estimated ArrivalTime,

Delivery.isUnloaded AtDestination, Delivery.routingStatus

o Nanoentities read: Voyage.voyageNumber, Cargo.trackingld
In addition to the use cases, we assumed the following characteristics.

Content Volatility

e Often: HandlingEvent.type, HandlingEvent.completionTime, HandlingEvent.registrationTime,
HandlingEvent.location, Delivery.transportStatus

e Rarely: Location.unLocode, Location.name

B. Service Cutter Assessment 93

Structural Volatility
e Rarely: Location.unLocode, Location.name

Furthermore all default characteristics as documented in Section 4.2 are taken into ac-
count.

The DDDSample provides multiple interfaces depending on the user’s role. The main
interface provides tracking information, the administration panel offers means to create
cargos and plan their itinerary and an additional interface is used to inform about
handling events. Out of these distinction by the UI we defined the roles listed in Table
B.2 each containing a group of nanoentities sharing an owner.

Table B.2: Shared owners in the DDDSample.

Role Owned nanoentities
CargoPlanner Cargo.trackingld
RouteSpecification.origin
RouteSpecification.destination
RouteSpecification.arrivalDeadline
Itinerary.itineraryNumber
Leg.loadLocation
Leg.unloadLocation

Leg.loadTime

Leg.unloadTime
Delivery.estimated Arrival Time
Delivery.routingStatus
CargoTracker HandlingEvent.type
HandlingEvent.completionTime
HandlingEvent.registrationTime
HandlingEvent.location
Delivery.transportStatus
Delivery.misdirected
Delivery.isUnloaded AtDestination
VoyageManager Voyage.voyageNumber
CarrierMovement.departureLocation
CarrierMovement.arrivalLocation
CarrierMovement.departureTime
CarrierMovement.arrival Time

Admin Location.name, Location.unLocode

B. Service Cutter Assessment 94

B.2.1 Expected Service Cuts

From our experience in software architecture we expect the Service Cutter to decompose
the Cargo Tracking System into the services presented in Figure B.5.

CarrierMovement Voyage
departureLocation : Location 1. voyageNumber: String
arrivalLocation : Location = P N
departureTime : Date
arrivalTime: Date fﬁ
Voyage Service
Location HandlingEvent Delivery
unLocode: String type: Type transportStatus: TransportStatus
name: String location: Location misdirected: Boolean
(> completionTime: Date |/ isUnloadedAtDestination: Boolean
registrationTime: Date estimatedArrivalDate: Date
routingStatus: RoutingStatus
Location 0} Tracking
Service Service
1
Planning D,
i 1
RouteSpecification Service {
Itinerary Leg
origin : Location Cargo
destination : Location | 1 \inald - St 1 | itineraryNumber: String 4.+ | loadLocation: Location
arrivalDeadline: Date [B d : String S| unloadLocation: Location
loadTime: Date
unloadTime: Date
L J

Figure B.5: DDD Sample with expected services.

As there are not many compatibility criteria defined, the main reasons for our decom-
position solution are responsibilities and semantic proximity by use cases:

e The Voyage Service contains all nanoentities regarding actual voyages and their
movements, regardless of any cargo.

e The Location Service is separated as a consequence of the low data and structural
volatility of these nanoentities. Locations are used and referred from almost all
entities but very rarely written. This service could be categorized as a master data
service.

e The Planning Service handles all nanoentities regarding cargos and their itinerary.

e The Tracking Service is responsible to track the actual events of a cargo. The ag-
gregates defined in the DDDSample assign the delivery to the Planning Service. In
our opinion the nanoentities transportStatus, misdirected and isUnloadedAtLocation

B. Service Cutter Assessment 95

are better assigned to the Tracking Service as they are defined as a consequence
of handling events.

B.2.2 Girvan-Newman Algorithm Assessment

For the Cargo Tracking System, we adjusted the default priorities to the following values.
These priorities provided the best results and match the characteristics of the Cargo
Tracking System.

o Content Volatility: S instead of XS
e Structural Volatility: S instead of XS
e Shared Owner: L instead of M

The resulting candidate service cuts by the Girvan-Newman algorithm for 4 services are
shown in Figure B.6.

B. Service Cutter Assessment 96

Ro uteSpecificaIiol].arrivaID‘ine

Leg.loa.ﬂLocation .)
Leg.unloadTime Le:gdoadT\me

s
y

Cargo tra c.k‘i'ﬁgiq_ /

/

/" RouteSpecification.destination
Locatign.name / -

De\ivery.transportStatus-__7_":: =

— Voyage.voyageNumber
/ Ser\-lfice_ﬁ\

... S N
/ |\ \
Delivery.routingStatus \) i .
SUETHEALRELS | D\eh\very.estlmatedArrlvaITlme
Service D . \ “
Dellvery.mlsdlrectqd \ N\,

- | g unlo e YiesRecification origin
ltinerary iineraryNum bi
Delivery.isUnloadedAtDestination

HandlingEvent/completionTime

Carrierl\ﬂovement.d\éQartureLocation . andlingEvent location

CarrierMovernent. arrivalLocation

g HandlingEventregistrationTime Service B

/

I—
CarrierMovement.arrivalTime Ser\lrlce c

| . HandlingEvent.type
| Location.unLocode

CarrierMovement.departureTime

Figure B.6: Cargo Tracking System service cuts by Girvan-Newman.

Surprisingly, the location has been split to Service D and Service C. Service C contains
the carrierMovement nanoentities but misses the voyageNumber which is closely related
to the carrierMovement through responsibilities and use cases. Service B represents the
handling aggregate as defined by the DDDSample but does not contain delivery nanoen-
tites as expected by us.

None of the service contains the nanoentities as expected by us and only Service B can
be categorized as reasonable service cut. We rate this a bad result.

The split of location might be due to the fact that in most use cases only Loca-
tion.unLocode is used and not Location.name. We changed the priority for Semantic
Proximity from M to S which resulted in the candidate service cuts shown in Figure B.7

B. Service Cutter Assessment 97

Location.unlocode

Handlin gEvent type

Serwcé‘..D

e

HandlingEvent.location

Service B HandlingEvent registrationTime -

Location.name

HandlingEvent.completionTime

RouteSpe cification destinl . -
".Leg_unmédLgGmgg:'trackmgld CarrierMovemept departure Location
Itinerary Itlneran@umner ;' CarrierMovement.&p?rtureTime
N \

_.-"I.Z)elivqw.'t'ransportStatus

- 'LéjloadLocalion u

Sérvice C

RouteSpecification arriv'a'lBea_g_Iine ™,

 RoutsSpacification
u Sgrviced | ||

AN . Delivery routingStatus

| CarrierMovement.arrivalTime

Leg.loadTime CarrierMovement.arrivalLocation

Leg.unloadTime

DeIiver)'.isUnIoadedr\tDestinati_dﬁ |

. [|
. Dﬂrer\;.estimatedArrivaITime
Voyage voyageMumber

Delivery. misdirected

Figure B.7: Semantic Proximity with priority S instead of M.

Location has now its own service as expected. This improves the result a little, but still
not enough to consider it acceptable.

Priorities Sensitivity

Changing priorities of the relevant coupling criteria to values between XS and L results
in minor changes. The following alternations have been produced:

o Delivery.transportStatus is assigned to the service containing handling events if

Identity € Lifecycle Commonality is set to XS. This is closer to our expectation of
a tracking service.

B. Service Cutter Assessment 08

o Increasing the priority of Semantic Prozimity to L produces an unreasonable ser-
vice containing Cargo, Voyage and RouteSpecification nanoentities.

We were not able to produce acceptable or good results for the Cargo Tracking System
with Girvan-Newman. The sensitivity of the results on priority changes seems acceptable.

B.2.3 Leung Algorithm Assessment

Like Girvan-Newman, the Leung algorithm only suggests a location service if Semantic
Prozimity is set to S instead of M. The candidate service cuts are shown in Figure B.8.

CarrierMovement arrivalTime

CarresMiovement arrivalLocation

CarrierM ovement de parturelocation

Sérvice B

. CarrigrMovement. departure Time
Voyage voyageMumber

O
ieli'.'er,' rog h'ngStatus.

Cargo frackingld

Leg.loadTime
E Itinerary, Kinerary Number
Handling Evant. type .
. Locatign name
) . RouteSpecification. origin
Delivery.transponSians DéRfery misdiretiod
. Leg loadLocation
HandlingEvent completionTime - .
Seryice C
m ' || Serpice A
HandlingEvent registrationTime Route Specification destinatior
. Delivery. e stimateddrivalTime
Delivery isUnloadedasD as!.on .
Leg unloadLocation ocation.unLocode
Rumﬁnciﬁtatb“gm" i ation

Leg unloadTime

Figure B.8: Cargo Tracking System service cuts by Leung.

B. Service Cutter Assessment 99

A location and a voyage service have been extracted while the planning and tracking
service are merged together. A different run with the same priorities is shown in Figure
B.9.

Locatigh. unLocode
HandlingEvent. registration Time

HandlingEverilype Delivery_is! adedAtDestination
Service B
. HandlingEvenl completionTime
Location.nams Delivery transportStatus
|
Leg.unigadTime HandlingEvent locatidaeivery. misdirected

JENLI
B - loadL o ER ey estimated At XPE a1

CarrierMovementasrivalTime

. -, CagfierMoyerient departureLocation
CarrierMovement deparfireTime .
Voyage voyageNumber
Delivery routingStatus Sefvice'C .
RouteSpecification. arrivalDeadline
ltinerary |t|neran,-Nurni Leg loadTime
Carrieriovement arrivalLocation .
.Julesp&mal@yq:mamcawn

RouteSpecification.destination

Figure B.9: Cargo Tracking System service cuts by Leung.

This time Leung extracted the tracking service and kept voyage and planning services
together. Noteworthy is the fact that Leung splits the delivery entity in two different
services the same way we expected it.

Other runs resulted in similar cuts whereas often only the location service was extracted.
The cuts done by Leung meet our expectations precisely but provides less services than
expected. We assume this results from the label propagation problem described in Section
6.4.2.

The results provided by Leung can be classified as acceptable.

B. Service Cutter Assessment 100

B.3 Conclusion

We conclude that, depending on the specified system, one or both algorithms produce
acceptable or good candidate service cuts that help an architect. However, the architect
always has to verify the result before taking any decision. These results suggest that the
Service Cutter approach can be used to assist service decomposition decisions. Further
improvements on the scoring system or algorithms presented in Chapter 9 may improve
the presented result.

C. Graph Clustering Evaluation

This Appendix documents the requirements and evaluation of clustering algorithms.

C.1 Requirements

The requirements listed in Table C.1 should be met by the algorithm and its implemen-

tation:
Table C.1: Algorithm Requirements

Name Description Priority

Distinct Clusters Every nanoentity is contained once and only once in | High
a cluster.

Minimal Coupling The total weight of the edges connecting clusters | High
should be minimal.

Implementation A free implementation of the algorithm should be | High
available either in Java or another language easily
callable from the Java Virtual Machine (JVM).

Number of Clusters | The number of clusters should be defined by a pa- | Medium
rameter.

Performance The algorithm should not take longer than 2 minutes | Medium
on an average computer to cluster 2000 nodes.

Simplicity It should be possible to understand the mechanism | Low
and parameters of the algorithm within a day assum-
ing the mathematical background of an average HSR
student.

Edge Cases Cases in which it is unclear which cut is best should | Low
be visualized in form of a hint or multiple solution
suggestions.

License The implementation license needs to be compatible | High

with the Apache 2 license to be used in the Service
Cutter. GPL should be avoided.

101

C. Graph Clustering Evaluation 102

C.2 Algorithms Assessment

The algorithms listed in Table C.2 were found by consulting clustering algorithm com-
parisons published by the Computer Science Review[34] and the Physical Review E[21].
Further Research using Google’s search engine and the community driven question and
answer platform Stackoverflow[72] were used to find applicable implementations of the
algorithms.

C. Graph Clustering Evaluation

103

Table C.2: Algorithm Evaluation

Name Description Implementation Assessment
MCL - | A clustering algorithm work- | Implementations of MCL | Positive
Markov ing on weighted undirected | are available in R and in
Cluster Al- | graphs. MCL is based on | Java as a plugin of the
gorithm[10] | Random Walks with Markov | Gephi[55] platform.

Chains.
HCS - | A clustering algorithm work- | Implementations only | No Java imple-
Highly Con- | ing on unweighted undirected | available in R. mentation
nected Sub- | graphs. The CLICK cluster-
graphs|[19] ing algorithm enhances HCS

for weighted edges.
Girvan— A clustering algorithm | Java implementations exist | Positive

Newman|25]

working on weighted undi-
rected graphs based on
Edge-Betweenness.

as part of the Jung[62]
framework (only
weighted graphs) and as a
plugin[56] of the Gephi[55]
platform.

un-

K-means[18]

A clustering algorithm work-
ing with vectors in an n-

Multiple implementations,
for example as part of the

No simple way
to transform

dimensional space. Spark[44] framework, are | the problem
available. from a graph
to vector
based rep-
resentation
found.
Apiacoal46] | A clustering algorithm work- | Apiacoa.org provides an | No support
ing on unweighted undirected | implementation of the algo- | for weighted
graphs. This algorithm is | rithm in Java. edges
based on maximal modularity
clustering.
Epidemic A clustering algorithm work- | GraphStream[58] provides | Positive
Label Prop- | ing on weighted (un-)directed | an implementation of the
agation graphs. This algorithm was | algorithm in Java as part of

suggested by Raghavan|29]
and refined by Leung[22].

their gs—algo package.

The three algorithms positively assessed are MCL, Girvan-Newman and Epidemic Label
Propagation. These algorithms haven been tested and further evaluated as described in

Section 6.4

D. Implementation Detalils

This appendix documents miscellaneous implementation details.

D.1 Docker Compose

A YAML file is used to configure and start all Docker containers required for the Service
Cutter. The file shown in Listing D.1 is delivered as docker—-compose.yml in the
source code of the Service Cutter.

In a productive environment the default passwords have to be changed.

Listing D.1: Docker Compose definition for the Service Cutter.

1 db:

2 image: postgres:9.4

3 restart: always

4 expose:

5 — 5432

6 environment:

7 POSTGRES USER: "editor"
8 POSTGRES_ PASSWORD: "NOASKHWWHM;jRBTrc8UjL"
9 editor:

10 image: services —toolkit/editor
11 ports:

12 — "40001:8080"

13 links:

14 — db

15 — engine

16 environment:

17 POSTGRES__USER: "editor"

18 POSTGRES_PASSWORD: "NOASKHWWHMjRBTrc8UjL"
19 ENGINE__HOST: "engine"

20 ENGINE_ PORT: "8080"

21 engine:

22 image: services —toolkit/engine

23 expose:

24 — 8080
25 ports:
26 — "40000:8080"

104

D. Implementation Details 105

D.2 JSON Schema Export

Listing D.2 lists the JSON Schema that specifies the export format for candidate service
cuts.

Listing D.2: JSON Schema for candidate services export.

1
{
2 "$schema':"http://json—schema.org/draft—03/schema",
3 "type": "object",
4 "additionalProperties": false,
5 "properties":{
6 "services ":{
7 "type":"array",
8 "items":{
9 "type":"object",
10 "additionalProperties": false,
11 "properties " :{
12 "nanoentities":{
13 "type": "array",
14 "items":{
15 "type":"string"
16 }
17 b
18 "name":
19 "type": "string"
20 h
21 "id":{
22 "type": "string "
23 }
24 }
25 1
26 b
27 "relations ":{
28 "type":"array",
29 "items":{
30 "type": "object",
31 "additionalProperties": false,
32 "properties " :{
33 "serviceA":{
34 "type":"string"
35 ,
36 "serviceB":{
37 "type": "string "
38 1
39 "score":
40 "type": "integer "
41 1
42 "sharedEntities" :{
43 "type": "array",
44 "items":{
45 "type":"string"
46 1

D. Implementation Details 106

47 }

48 }

49 }

50 2

51 "useCaseResponsibility":{

non

52 "type":"object"

53 }

D.3 Performance

This section theoretically discusses whether the Service Cutter scales to support large
data volumes.

The theoretical number of edges may cause performance problems. The maximum num-
ber of edges in a graph can be described using a formula: A graph of n nodes, where
every node is connected to all other nodes, has e edges.

n(n —1)
2

e =

The number of edges grows almost quadratically with up to 1°999°000 edges for 2000
nodes.

Our implementation however will unlikely have anything close to the theoretical number
of edges as:

e Coupling of type cohesiveness only adds edges where nanoservices are in a rela-
tionship with each other.

o Coupling of type compatibility only adds a negative score (penalty) to existing
relationships.

e Coupling of type constraint only removes existing edges.

The number of edges can therefore only cause problems when a cohesiveness coupling is
specified that includes a large number of nodes. An example of such a coupling is for a
use case including a very large number of nanoentities which is a very unlikely case. We
therefore conclude that the number of edges is probably not an issue.

E. Project Definition

The following project definition is an excerpt of the original project definition which was
signed at the beginning of the thesis project.

E.1 Context

The idea of splitting a monolithic landscape into smaller and manageable pieces is not
new. Having been promoted e.g. in the Service Oriented Architecture (SOA) and its
predecessors (OOAD, CBSE), it is being discussed under the banner of microservices
nowadays. One challenge remains the same: How, and considering which criteria, do you
split data and functions into manageable and maintainable pieces? The microservices
community suggests Domain-Driven Design (DDD) to identify service boundaries.

With microservices, loose coupling and the single responsibility principle have received
even more importance. Unnecessary coupling between microservices results in perfor-
mance loss, development overhead and complex system landscapes that are hard to test
and maintain. Engineers and architects are used to draw borders between components,
but are generally doing this “as it feels right”. Coming from an object oriented program-
ming, very often logical entities such as classes are bundled to packages or microservices.
Our assumption is that there is a better, more sophisticated way to model data and func-
tions in order to achieve loose coupling and domain decomposition.

E.2 Goals and Deliverables

The goal of the thesis project it to conceptualize and prototypically implement a system
that allows a software architect to model data and logic and enhance it with a series of
characterizations such as volatility, security, volumes, consistency and others. This data
can then be used to suggest a set of services (or bounded contexts in DDD terminology)
to the architect. We do not aim for full automation; the architect may or may not make
use of these suggestions.

We identify four separate tasks to implement the described idea:

107

E. Project Definition 108

1. Research after which criteria data can be grouped into services to achieve loose
coupling.

2. Definition of a format to model components, data and its characterizations.

3. Creation or evaluation of an algorithm to find one or more “optimized” suggestions.

4. Implementation of a system taking the defined format as an input to process it
into one or multiple suggestions.

Every task can be done in a very simple or a more advanced way. The implementation
for example, could be done as a simple command line tool and later on enlarged with a
web user interface and a graph based database for data processing. The complexity of
the tasks increase considerably with every new criterion taken into account.

Critical success factors for this bachelor thesis are the maturity and practical applica-
bility of the developed concepts and their implementation, as well as their generality
and extensibility. Algorithm and support system shall be applied to several sample ap-
plications (both public ones such as Pet Store and DDD Sample Application) so that
effectiveness and efficiency of the developed approach and its value for the architect can
be demonstrated.

Glossary

NET .NET Framework is a software framework developed by Microsoft. 8
API Application Programming Interface. 7, 32, 34, 65, 69

BPM Business Process Management. 9
BPMN Business Process Model and Notation. 7

C C is a general-purpose computer programming language. 66

coupling criterion A architecturally significant requirement that impacts service de-
composition. 1

CQRS Command Query Responsibility Segregation. 7
DDD Domain-Driven Design. 8, 9, 11, 36, 90

Entity A group of nanoentities which are part of a bigger concept sharing an identity
and a common lifecycle.[12]. 29

ERM Entity-Relationship-Model. 9, 35, 36, 39, 45, 50
HSR Hochschule fir Technik Rapperswil. 8, 101
InfoQ InfoQ is a online knowledge base on various programming topics. 5

JAR Java Archive. 40

JNI Java Native Interface. 66

JPA Java Persistence API. 54

JSON JavaScript Object Notation. 36, 37, 57, 58, 62
JVM Java Virtual Machine. 101

MCL Markov Cluster. 40

OOAD Object-Oriented Analysis and Design. 9
ORM Object-Relational Mapping. 69

109

Glossary 110

PII Personally Identifiable Information. 86
RPC Remote Procedure Calls. 7

SOA Service Oriented Architecture. 8, 9, 70
SOMA Service-Oriented Modeling and Architecture. 9

system A system refers to a software application whose architecture needs to be de-
composed.. 2

UI User Interface. 10, 40, 53, 93
UML Unified Modeling Language. 69

VM Virtual Machine. 52

YAML YAML is a recursive acronym and stands for “YAML Ain’t Markup Language”.
YAML is a human-readable data serialization format. 104

References

Literature

[2] A. Arsanjani. “Service-oriented modeling and architecture”. In: IBM developer
works (2004), pp. 1-15 (cit. on p. 9).

3] A. Avram. InfoQ - Udi Dahan on Defining Service Boundaries. URL: http://www.
infoq.com/news/2015/02/service-boundaries-healthcare (cit. on p. 22).

[4] K. Bastani. Using Graph Analysis to Decompose Monoliths into Microservices with
Neo4j. URL: http://www.kennybastani.com /2015 /05 /graph-analysis- microservice-
neo4j.html (visited on 2015-09-24) (cit. on p. 9).

[5] M. E. Conway. “How do committees invent”. In: Datamation 14.4 (1968), pp. 28—
31 (cit. on p. 19).

[6] U.Dahan. Finding Service Boundaries — illustrated in healthcare (NDC' conference
video: 1:05 - 1:07. URL: https://vimeo.com /113515335 (visited on 2015-11-29) (cit.
on p. 23).

[7] U. Dahan. Logical and Physical Architecture. URL: http://udidahan.com/2010/11/
08/logical-and- physical-architecture/ (cit. on p. 70).

[8] U. Dahan. The known unknowns of SOA. URL: http://udidahan.com/2010/11/15/
the-known-unknowns-of-soa/ (visited on 2015-10-22) (cit. on p. 10).

[9] J. Dietrich et al. “Cluster analysis of Java dependency graphs”. In: Proceedings of
the 4th ACM symposium on Software visualization. ACM. 2008, pp. 91-94 (cit. on
p. 9).

[10] S. van Dongen. “Graph Clustering by Flow Simulation”. PhD thesis. University of
Utrecht, 2000. URL: http://micans.org/mcl/ (visited on 2015-12-01) (cit. on pp. 40,
103).

[11] E. Evans. Domain-Driven Design Reference: Definitions and Pattern Summaries.
Dog Ear Publishing, 2014 (cit. on p. 11).

[12] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.

Pearson Education, 2003 (cit. on pp. 8, 17, 22, 90, 109).

111

http://www.infoq.com/news/2015/02/service-boundaries-healthcare
http://www.infoq.com/news/2015/02/service-boundaries-healthcare
http://www.kennybastani.com/2015/05/graph-analysis-microservice-neo4j.html
http://www.kennybastani.com/2015/05/graph-analysis-microservice-neo4j.html
https://vimeo.com/113515335
http://udidahan.com/2010/11/08/logical-and-physical-architecture/
http://udidahan.com/2010/11/08/logical-and-physical-architecture/
http://udidahan.com/2010/11/15/the-known-unknowns-of-soa/
http://udidahan.com/2010/11/15/the-known-unknowns-of-soa/
http://micans.org/mcl/

References 112

[13]
[14]

[15]

M. Fowler. Microservices. URL: http://martinfowler.com/articles/microservices.html
(visited on 2015-10-22) (cit. on p. 11).

M. Fowler. “MonolithFirst”. In: (2010). URL: http:/ / martinfowler.com / bliki /
MonolithFirst.html (visited on 2015-12-17) (cit. on p. 60).

M. Fowler. “Richardson Maturity Model: steps toward the glory of REST”. In:
(2010). URL: http://martinfowler.com /articles /richardsonMaturityModel.html (vis-
ited on 2015-12-17) (cit. on p. 58).

M. Fowler. Service Definition by Martin Fowler in his article about Inversion of
Control. URL: http://www .martinfowler.com / articles /injection . html (visited on
2015-10-22) (cit. on p. 11).

P. R. Halmos. Naive set theory. Springer Science & Business Media, 1960 (cit. on
p. 77).

J. A. Hartigan and M. A. Wong. “Algorithm AS 136: A k-means clustering algo-
rithm”. In: Applied statistics (1979) (cit. on p. 103).

E. Hartuv and R. Shamir. “A clustering algorithm based on graph connectivity”.
In: Information processing letters 76.4 (2000) (cit. on p. 103).

P. B. Kruchten. “The 4+ 1 view model of architecture”. In: Software, IEEE 12.6
(1995), pp. 42-50 (cit. on pp. 8, 10, 16).

A. Lancichinetti and S. Fortunato. “Community detection algorithms: a compar-
ative analysis”. In: Phys. Rev. E 80 (2009). arXiv: 0908.1062v2 (cit. on pp. 67,
102).

I. X. Y. Leung et al. “Towards real-time community detection in large networks”.
In: Phys. Rev. E 79 (2009). arXiv: 0808.2633 (cit. on pp. 4042, 103).

R .C. Martin. Agile software development: principles, patterns, and practices. Pren-
tice Hall PTR, 2003 (cit. on pp. 14, 18, 19).

J. D. Meier et al. Design Guidelines for Application Performance. URL: https:
//msdn.microsoft.com/en-us/library /ff647801.aspx (visited on 2015-11-29) (cit. on
p. 20).

M. E. Newman and M. Girvan. “Finding and evaluating community structure in
networks”. In: Phys. Rev. E 69 (2004). arXiv: cond-mat/0308217 (cit. on pp. 40,
41, 103).

S. Newman. Building Microservices. " O’Reilly Media, Inc.", 2015 (cit. on pp. 7,
12).

C. Pang et al. “Topological sorts on DAGs”. In: Information Processing Letters

115.2 (2015), pp. 298-301 (cit. on p. 35).

D. L. Parnas. “On the criteria to be used in decomposing systems into modules”.
In: Communications of the ACM 15.12 (1972), pp. 1053-1058 (cit. on pp. 5, 13,
19).

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/bliki/MonolithFirst.html
http://martinfowler.com/bliki/MonolithFirst.html
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.martinfowler.com/articles/injection.html
http://arxiv.org/abs/0908.1062v2
http://arxiv.org/abs/0808.2633
https://msdn.microsoft.com/en-us/library/ff647801.aspx
https://msdn.microsoft.com/en-us/library/ff647801.aspx
http://arxiv.org/abs/cond-mat/0308217

References 113

[29]

[30]

U. N. Raghavan, R. Albert, and S. Kumara. “Near linear time algorithm to detect
community structures in large-scale networks”. In: Phys. Rev. E 76 (2007). arXiv:
0709.2938 (cit. on pp. 40-42, 103).

C. Richardson. Microservices: Decomposing Applications for Deployability and
Scalability. URL: http://www .infoq.com / articles / microservices- intro (visited on
2015-11-29) (cit. on p. 18).

C. Richardson. “Microservices: Decomposing applications for deployability and
scalability”. In: (2014) (cit. on p. 5).

A. Rotem-Gal-Oz. Services, Microservices, Nanoservices. URL: http://arnon.me/
2014/03/services-microservices-nanoservices/ (visited on 2015-10-28) (cit. on p. 26).

N. Rozanski and E. Woods. Software Systems Architecture: Working with Stake-
holders Using Viewpoints and Perspectives. Pearson Education, 2011 (cit. on p. 21).

S. E. Schaeffer. “Graph clustering”. In: Computer Science Review 1.1 (2007),
pp. 27-64 (cit. on p. 102).

W.P. Stevens, G.J. Myers, and L.L. Constantine. “Structured design”. In: IBM
Systems Journal 13.2 (1974), pp. 115-139 (cit. on p. 13).

“Systems and software engineering — Vocabulary, ©2011 IEEE”. In: IFEE Std.
24765-2010 (2010) (cit. on p. 13).

W. Vogels. Eventually Consistent - Revisited. URL: http://www.allthingsdistributed.
com/2008/12/eventually_consistent.html (visited on 2015-11-29) (cit. on p. 20).

A. Yakyma. Why Progressive Estimation Scale Is So Efficient For Teams. URL:
http: / /www.yakyma.com /2012 /05 / why- progressive- estimation- scale- is-so. html
(visited on 2015-12-01) (cit. on p. 46).

O. Zimmermann. “Architectural decisions as reusable design assets”. In: IFFE
software 1 (2011), pp. 6469 (cit. on p. 71).

O. Zimmermann. “Making Architectural Knowledge Sustainable, the Y-approach”.
In: IEEFE Software talk from SATURN. 2012. URL: http://resources.sei.cmu.edu/
library /asset-view.cfm?asset|D=22132 (visited on 2015-11-25) (cit. on p. 71).

O. Zimmermann, P. Krogdahl, and C. Gee. “Elements of service-oriented analysis
and design”. In: IBM developerworks (2004) (cit. on p. 9).

O. Zimmermann et al. “Architectural Decision Guidance Across Projects”. In:
Software Architecture (WICSA), 2015 12th Working IEEE/IFIP Conference on.
IEEE. 2015, pp. 85-94 (cit. on pp. 28, 71).

Online Sources

[43]

AngularJS. A Java Script MVC' framework. URL: https://angularjs.org/ (visited on
9015-11-18) (cit. on pp. 32, 57).

http://arxiv.org/abs/0709.2938
http://www.infoq.com/articles/microservices-intro
http://arnon.me/2014/03/services-microservices-nanoservices/
http://arnon.me/2014/03/services-microservices-nanoservices/
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.yakyma.com/2012/05/why-progressive-estimation-scale-is-so.html
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=22132
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=22132
https://angularjs.org/

References 114

[44]
[45]
[46]
[47]
[49]
[50]

[51]

[52]

Apache Spark. Lightning-fast cluster computing. URL: http:/ /spark.apache.org
(visited on 2015-09-23) (cit. on p. 103).

Apache Tomcat Webserver. URL: http://tomcat.apache.org/ (visited on 2015-12-16)
(cit. on p. 58).

Apiacoa. Graph clustering and graph visualization. URL: http:/ /apiacoa.org/
research /software/graph/index.en.html (visited on 2015-09-23) (cit. on p. 103).

Bootstrap. A front end framework based on HTML, CSS and Java Script. URL:
http://getbootstrap.com/ (visited on 2015-11-18) (cit. on pp. 32, 57).

DDDSample on Github. URL: https://github.com /citerus/dddsample-core (visited
on 2015-12-06) (cit. on pp. 28, 90).

DDDSample Screencast on Youtube. URL: https://www.youtube.com /watch?v=
eA8xgdtqqs8 (visited on 2015-12-06) (cit. on p. 90).

Docker. Docker is an open platform for building, shipping and running distributed
applications. URL: https://www.docker.com/ (visited on 2015-10-19) (cit. on pp. 31,
32, 57, 58).

Docker Compose. Docker Compose is a tool to define and run multi-container
applications. URL: https://docs.docker.com/compose/ (visited on 2015-11-19) (cit.
on p. 58).

Enterprise Architect. A comprehensive UML analysis and design tool. URL: http:
//www.sparxsystems.eu/start/home/ (visited on 2015-12-11) (cit. on p. 69).

Gephi. The Open Graph Viz Platform. URL: http://gephi.github.io (visited on
2015-09-23) (cit. on pp. 79, 103).

Gephi Marketplace: Girvan Newman Clustering. URL: https://marketplace.gephi.
org/plugin/girvan-newman-clustering/ (visited on 2015-12-02) (cit. on pp. 69, 103).

Gephi Marketplace: Markov Cluster Algorithm (MCL). URL: https://marketplace.
gephi.org / plugin / markov- cluster- algorithm-mcl/ (visited on 2015-12-02) (cit. on
pp. 40, 74).

Graphstream Project: Epidemic Label Propagation Algorithm. URL: http : / /
graphstream-project.org/ (visited on 2015-12-02) (cit. on pp. 40, 79, 103).

Hibernate ORM. Domain model persistence for relational databases. URL: https:
//hibernate.org/ (visited on 2015-11-19) (cit. on pp. 54, 58).

JHipster. A framework to implement Java based web applications based on Spring
and AngularJS. URL: http://jhipster.github.io/ (visited on 2015-11-18) (cit. on
pp. 32, 56, 57).

JSON Schema. URL: http://json-schema.org/ (visited on 2015-12-16) (cit. on p. 57).

Jung. Java Universal Network/Graph Framework. URL: http://jung.sourceforge.net
(visited on 2015-09-23) (cit. on p. 103).

http://spark.apache.org
http://tomcat.apache.org/
http://apiacoa.org/research/software/graph/index.en.html
http://apiacoa.org/research/software/graph/index.en.html
http://getbootstrap.com/
https://github.com/citerus/dddsample-core
https://www.youtube.com/watch?v=eA8xgdtqqs8
https://www.youtube.com/watch?v=eA8xgdtqqs8
https://www.docker.com/
https://docs.docker.com/compose/
http://www.sparxsystems.eu/start/home/
http://www.sparxsystems.eu/start/home/
http://gephi.github.io
https://marketplace.gephi.org/plugin/girvan-newman-clustering/
https://marketplace.gephi.org/plugin/girvan-newman-clustering/
https://marketplace.gephi.org/plugin/markov-cluster-algorithm-mcl/
https://marketplace.gephi.org/plugin/markov-cluster-algorithm-mcl/
http://graphstream-project.org/
http://graphstream-project.org/
https://hibernate.org/
https://hibernate.org/
http://jhipster.github.io/
http://json-schema.org/
http://jung.sourceforge.net

References 115

[63]

[64]

Liquibase. A database-independent library to manage and apply database schema
changes using XML files. URL: http://www.liquibase.org/ (visited on 2015-11-19)
(cit. on p. 58).

Neo4j Graph Gists are an easy way to create and share your documents containing
example graph models and use-cases. URL: http://neo4j.com /developer/graphgist/
(visited on 2015-12-13) (cit. on p. 9).

NServiceBus. A service bus for .NET. URL: http://particular.net/nservicebus (vis-
ited on 2015-12-12) (cit. on p. 8).

PostgreSQL. An open-source object-relational database management system. URL:
http://www.postgresql.org/ (visited on 2015-11-19) (cit. on p. 58).

Service Cutter Wiki. URL: https://github.com /ServiceCutter /ServiceCutter / wiki
(visited on 2015-12-16) (cit. on p. 37).

Simple Logging Facade for Java (SLF4J). URL: http://www.slf4j.org/ (visited on
2015-04-12) (cit. on p. 31).

Spring Boot is a framework to build Spring applications. URL: http:/ /projects.
spring.io/spring-boot/ (visited on 2015-10-12) (cit. on pp. 32, 56).

Spring Framework. URL: https://spring.io/ (visited on 2015-12-07) (cit. on p. 32).
Spring Security Project. URL: http://projects.spring.io/spring-security/ (visited on
2015-12-16) (cit. on p. 59).

Stackoverflow - Graph Clustering Library in Java. URL: http://stackoverflow.com/

questions /32627479 / graph- clustering- library-in-java /32629606 # 32629606 (visited
on 2015-09-23) (cit. on p. 102).

Swagger.io - Swagger is a specification and complete web application framework
implementation for describing, producing, consuming, and visualizing RESTful web
APIs. URL: http://swagger.io/ (visited on 2015-10-23) (cit. on p. 69).

UnpackNBM wused for Gephi Toolkit Plugins. URL: https://github.com /mbastian/
UnpackNBM (visited on 2015-12-07) (cit. on p. 40).

Vis.js. A browser based visualization library. URL: http://visjs.org/ (visited on
2015-12-18) (cit. on p. 57).

http://www.liquibase.org/
http://neo4j.com/developer/graphgist/
http://particular.net/nservicebus
http://www.postgresql.org/
https://github.com/ServiceCutter/ServiceCutter/wiki
http://www.slf4j.org/
http://projects.spring.io/spring-boot/
http://projects.spring.io/spring-boot/
https://spring.io/
http://projects.spring.io/spring-security/
http://stackoverflow.com/questions/32627479/graph-clustering-library-in-java/32629606#32629606
http://stackoverflow.com/questions/32627479/graph-clustering-library-in-java/32629606#32629606
http://swagger.io/
https://github.com/mbastian/UnpackNBM
https://github.com/mbastian/UnpackNBM
http://visjs.org/

	Declaration
	Abstract
	Management Summary
	Introduction
	Hypothesis
	Project Scope
	Context and Influences
	Market Overview

	Domain Analysis
	Service Definition
	Service Decomposition

	Decomposition Model
	Catalog Overview
	Coupling Criteria Cards
	Decomposition Questionnaire

	Service Cutter Requirements
	Personas
	Functional Requirements
	Non-Functional Requirements

	Service Cutter Design and Implementation
	Overview
	User Representations
	Decomposition by Graph Clustering
	Clustering Algorithms
	Scoring
	Prototype

	Discussion
	Usage Scenarios
	Benefits
	Requirements Assessment

	Conclusion
	Hypothesis Evaluation
	Summary and Outlook

	Future Work
	Algorithms and Approach
	Service Cutter Improvements
	Toolchain Integration
	Scoring
	Conceptual Refinements

	Decomposition Approach Evaluation
	Graph Clustering Problems
	Approach #2: Rating of Possible Service Cuts
	Approach #3: Greedy Service Construction
	Conclusion

	Service Cutter Assessment
	Trading System
	Cargo Tracking System - Domain-Driven Design Sample
	Conclusion

	Graph Clustering Evaluation
	Requirements
	Algorithms Assessment

	Implementation Details
	Docker Compose
	JSON Schema Export
	Performance

	Project Definition
	Context
	Goals and Deliverables

	Glossary
	References
	Literature
	Online Sources

