Readiness for Tailored Attacks and Lateral Movement Detection

STUDY THESIS
FALL TERM 2018

Authors:
Claudio MATTES
claudio.mattes@hsr.ch

Lukas KELLENBERGER
lukas.kellenberger@hsr.ch

Supervisor:
Cyrill BRUNSCHWILER
Hochschule für Technik Rapperswil
cyrill.brunschwiler@hsr.ch

DEPARTMENT COMPUTER SCIENCES
HSR UNIVERSITY OF APPLIED SCIENCES RAPPERSWIL
CH-8640 RAPPERSWIL, SWITZERLAND

December 18, 2018
Abstract

Introduction

The number of cyber-attacks where malicious code is used has massively increased recently. These attacks not only settle on the infected system, but can also infect other systems through lateral movements in the network. The outcome is often the complete infiltration of the organization due to the use of advanced persistent threats (APT). Although the configuration of these targeted networks varies depending on the organization, common patterns in the attack methods can be detected. In the analysis of such patterns and events, information and time are key factors to success. Hence, readiness for such an event is a decisive factor.

Procedure

The project was limited to the operating system Windows 10 Pro or Windows Server 2016. In the elaboration phase, research was carried out into how the goal of determining readiness of a system could be implemented. The decision was made to implement a proof of concept (PoC) based on the paper "Detecting Lateral Movement through Tracking Event Logs" of the "Japan Computer Emergency Response Team Coordination Center". Existing tools and/or products were evaluated, on which can be built on. Unfortunately, no suitable products were found and so we decided that such a PoC should be redesigned. As technology served Windows PowerShell because it is close to the Microsoft operating system and fulfills the non functional requirement to be a portable script. Moreover, the PoC should be a headless tool which can be started without any GUI and the possibility to be executed offline.

Result

During the construction phase the "System Readiness Inspector - SRI", a Windows PowerShell script, was developed. This phase was completed using the Scrum method. The SRI has four different modes: Online, Offline, GroupPolicy, AllGroupPolicies. The online mode is limited to the current system and thus determines its readiness. The offline mode is used to be able to make a statement about any system by means of exports. The GroupPolicy mode is limited to a specific Group Policy, which is checked for its audit settings. In the AllGroupPolicies mode, all group policies of the current domain are examined.
Management Summary

Initial Situation

The number of cyber-attacks where malicious code is used, which not only settles on the infected system, but also infects other systems in the network, has massively increased recently. The outcome is often the complete infiltration of the organization. In the analysis of such an event, information and time are key factors to success. Consequently, readiness for such an event is a decisive factor.

The "Japan Computer Emergency Response Team Coordination Center" has analysed the procedure and the used tools of such attacks. In their most recent publication on this topic, they give hints which events indicate a possible contamination. The aim of this study thesis is to use this published paper and write a PoC that helps to identify the readiness of a system. The readiness of a system indicates whether solid conclusions can be drawn about the attacker in the event of an attack.

Procedure

The project was initially limited to Windows machines running on the operating system Windows 10 Pro or Windows Server 2016. The project was handled according to common project management and software engineering principles. During the elaboration phase we did some research on the topic and we tested different tools which could be interesting for our project. At the end of the elaboration we had decided to realise the project using PowerShell. In the following six weeks we wrote a PoC - the "System Readiness Inspector - SRI". The SRI reads information about the system on which it is running and evaluates which attack categories (e.g. command execution, password hash acquisition, deleting evidence on a system and so on) can or cannot be detected with these settings. This information obtained is then visualised into a PDF document and output by the script.

Results

The SRI runs successfully and outputs important system settings about the readiness. Illustrated in a PDF, the analyst can see at a glance which of his audit settings are missing or incorrect. The script also evaluates which attacks might be missed due to incorrectly configured settings. SRI helps an analyst to check a system for its readiness and saves him the tedious task of collecting and evaluating the data.

Outlook

SRI is still at an early stage of its development. The further development of the visualisation is conceivable. The extension to an entire fleet will also be an approach that will certainly be pursued further. Nevertheless, SRI is a useful helper when it comes to get a quick overview about the audit settings and the readiness in general.
Contents

Abstract

Introduction .. I
Procedure ... I
Result .. I

Management Summary

Initial Situation .. II
Procedure ... II
Results .. II
Outlook .. II

Table of Contents

I Technical Report .. VIII
1 Introduction and Overview ... 1
1.1 Purpose and Scope .. 1
1.2 Audience .. 1
1.3 Document Structure ... 1
2 Test Environment ... 2
2.1 User ... 3
2.2 Difficulties ... 3
3 Analysis ... 4
3.1 BloodHound / SharpHound ... 4
3.1.1 Description ... 4
3.1.2 Difficulties ... 4
3.1.3 Conclusion ... 4
3.2 Windows Event Logging Forensic Logging Enhancement Services 4
3.2.1 Description ... 4
3.2.2 Conclusion ... 5
3.3 Microsoft Security Compliance Toolkit .. 5
3.3.1 Description ... 5
3.3.2 Difficulties ... 5
3.3.3 Conclusion ... 5
3.4 LogonTracer .. 7
3.4.1 Description ... 7
3.4.2 Difficulties ... 9
3.4.3 Conclusion ... 9

III
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>Microsoft Monitoring Active Directory for Signs of Compromise</td>
<td>10</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Description</td>
<td>10</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Conclusion</td>
<td>10</td>
</tr>
<tr>
<td>3.6</td>
<td>MITRE Adversarial Tactics, Techniques and Common Knowledge (ATT&CK)</td>
<td>10</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Description</td>
<td>10</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Conclusion</td>
<td>10</td>
</tr>
<tr>
<td>3.7</td>
<td>Sysmon</td>
<td>11</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Description</td>
<td>11</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Conclusion</td>
<td>11</td>
</tr>
<tr>
<td>3.8</td>
<td>Sysmon Tools</td>
<td>11</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Description</td>
<td>11</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Conclusion</td>
<td>11</td>
</tr>
<tr>
<td>3.9</td>
<td>sysmon-modular</td>
<td>12</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Description</td>
<td>12</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Conclusion</td>
<td>12</td>
</tr>
<tr>
<td>3.10</td>
<td>CryptoAPI 2.0</td>
<td>13</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Description</td>
<td>13</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Conclusion</td>
<td>13</td>
</tr>
<tr>
<td>3.11</td>
<td>JPCERT/CC - Detecting Lateral Movement in APTs</td>
<td>14</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Description</td>
<td>14</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Conclusion</td>
<td>14</td>
</tr>
<tr>
<td>3.12</td>
<td>JPCERT/CC - Detecting Lateral Movement through Tracking Event Logs</td>
<td>14</td>
</tr>
<tr>
<td>3.12.1</td>
<td>Description</td>
<td>14</td>
</tr>
<tr>
<td>3.12.2</td>
<td>Conclusion</td>
<td>14</td>
</tr>
<tr>
<td>3.13</td>
<td>Conclusion from the analysis</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Design</td>
<td>15</td>
</tr>
<tr>
<td>4.1</td>
<td>Decision for a new Tool</td>
<td>15</td>
</tr>
<tr>
<td>4.2</td>
<td>Mandatory Event Logs</td>
<td>15</td>
</tr>
<tr>
<td>4.3</td>
<td>Correlation: Advanced Audit Policy Setting and Event Log IDs</td>
<td>18</td>
</tr>
<tr>
<td>4.4</td>
<td>Attack Categories</td>
<td>20</td>
</tr>
<tr>
<td>4.5</td>
<td>Audit Policy Priority</td>
<td>22</td>
</tr>
<tr>
<td>4.6</td>
<td>Domain Analysis</td>
<td>24</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Network</td>
<td>25</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Computer</td>
<td>25</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Event</td>
<td>25</td>
</tr>
<tr>
<td>4.6.4</td>
<td>AuditPolicy</td>
<td>25</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Reference</td>
<td>25</td>
</tr>
<tr>
<td>4.7</td>
<td>Conclusion from the design</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>System Architecture</td>
<td>26</td>
</tr>
<tr>
<td>5.1</td>
<td>Use Cases (UC)</td>
<td>26</td>
</tr>
<tr>
<td>5.1.1</td>
<td>UC01 - Read Resultant Set of Policies</td>
<td>26</td>
</tr>
<tr>
<td>5.1.2</td>
<td>UC02 - Analyse Audit Policies</td>
<td>26</td>
</tr>
<tr>
<td>5.1.3</td>
<td>UC03 - Find Event Logs</td>
<td>27</td>
</tr>
<tr>
<td>5.1.4</td>
<td>UC04 - Analyse Found Event Logs</td>
<td>27</td>
</tr>
<tr>
<td>5.1.5</td>
<td>UC05 - Display missing or wrong system configuration</td>
<td>27</td>
</tr>
<tr>
<td>5.1.6</td>
<td>UC06 - Save Result to specific path</td>
<td>28</td>
</tr>
<tr>
<td>5.1.7</td>
<td>UC07 - Main Script</td>
<td>28</td>
</tr>
<tr>
<td>5.1.8</td>
<td>UC08 - Get Domain Information</td>
<td>29</td>
</tr>
<tr>
<td>5.2</td>
<td>Non Functional Requirements</td>
<td>29</td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td>29</td>
</tr>
</tbody>
</table>
5.3 Technologies
 5.3.1 Chosen Technologies & Frameworks
 5.3.2 Rejected Technologies
5.4 Sequence Diagram
 5.4.1 GetAuditPolicy()
 5.4.2 AnalyseAuditPolicy()
 5.4.3 GetEventLog()
 5.4.4 AnalyseEvents()
 5.4.5 VisualiseResults()

6 Implementation
 6.1 Main Script: SRI
 6.1.1 Result
 6.1.2 Approach
 6.1.3 Implementation
 6.2 Module: GetAndAnalyseAuditPolicies
 6.2.1 Result
 6.2.2 Approach
 6.2.3 Implementation
 6.3 Module: GetAndCompareLogs
 6.3.1 Result
 6.3.2 Approach
 6.3.3 Implementation
 6.4 Module: Visualize
 6.4.1 Result
 6.4.2 Approach
 6.4.3 Implementation

7 Conclusion and Outlook
 7.1 Conclusion Achieved Work
 7.2 Conclusion Technologies and Frameworks
 7.3 Outlook
Readiness for Tailored Attacks and Lateral Movement Detection

Contents

Glossary .. VI

Listings ... IX

List of Figures .. X

List of Tables ... XI

Bibliography ... XIV

II Appendix ... XV

Task Definition .. XVI
 Einführung .. XVI
 Aufgabe .. XVI
 Abgrenzung ... XVI
 Tätigkeiten ... XVI
 Vorgehen .. XVII
 Anforderungen XVII
 Technologien ... XVII
 Infrastruktur ... XVIII
 Erwartete Resultate XVIII
 In elektronischer Form XVIII
 Auf Papier .. XVIII
 Termine .. XVIII
 Zeitplan und Meilensteine XIX
 Betreuung .. XIX
 Kontakt .. XIX
 Unterschriften XIX

Code Metrics ... XX
 Test Overview XX
 Test Scores ... XX
 Maintainability XXI

Developer Manual I
 1.1 System Overview I
 1.2 Organization of the Manual I
 2.1 Operating System II
 2.2 Windows PowerShell 5.0 II
 2.3 Integrated Development Environment (IDE) II
 2.4 Microsoft Visual Studio Code Extensions II
 3.1 Microsoft Azure DevOps III
Readiness for Tailored Attacks and Lateral Movement Detection

Contents

3.1.1 Configuration .. III
4.1 Pester .. VI

User Manual .. I

1.1 System Overview .. I
1.2 Organization of the Manual I
2.1 Operating System II
2.2 User Authorizations II
2.3 Pre-Installed Software II
3.1 Download ... III
3.2 Installation ... III
4.1 Starting SRI ... IV
4.2 SRI modes ... V
 4.2.1 Online Mode VI
 4.2.2 Offline Mode VII
 4.2.3 GroupPolicy Mode IX
 4.2.4 AllGroupPolicies Mode IX
Part I

Technical Report
1 Introduction and Overview

1.1 Purpose and Scope

As described in the abstract, the key for a successful analysis in case of an advanced persistence threat (APT) or lateral movement in a network, is to have a solid event logging of all systems participating in the network.

Shusei Tomonaga at the Japan Computer Emergency Response Team Coordination Center (JPCERT/CC) has shown with the study "Detecting Lateral Movement through Tracking Event Logs" [1] how important it is to configure solid event logging to analyse attacks. JPCERT/CC found in their study that APT and lateral movements could be detected with the correct settings in the audit policy and with the help of Sysmon 37 of 44 attacks.

Hence, it was decided to implement the project on the basis of this study. This study offers an extensive set of analysed tools from attackers and what effects these tools have on the event log. Thus, the readiness of a system can be concluded from this study.

1.2 Audience

This document is intended for software developers, security advisors and engineers who want to gain an insight into the relationship between APTs / lateral movements and event logging. Furthermore, this document gives an insight about the System Readiness Inspector (SRI) tool, which the result of this thesis was.

1.3 Document Structure

This technical report is structured in several sections:

- **Test Environment**: Describes the test environment used to test tools during the research and test the developed tool during the implementation.

- **Analysis**: This section contains the research part, in which tools were searched for on which can be built on

- **Design**: Describes the decisions for the tool which are derived from the analysis and addresses the problem domain.

- **System Architecture**: Based on the design this section will answer the question how the problem domain will be fulfilled. Therefore, the use cases developed and the technology decisions are discussed.

- **Implementation**: Describes the schedules of the different implemented modes as well as the core logics in detail.

- **Conclusion and Outlook**: Is a retrospective of the thesis and makes statements about findings. In addition, an outlook on further development and expansion in this area will be drawn on the basis of this work.
2 Test Environment

This chapter of the report describes the setup of the testing environment in which not only the tools during the research were tested, but also was used to test the System Readiness Inspector (SRI) itself.

A virtual network was set up on the Microsoft Azure Cloud as a test environment. The test network was set up in the cloud so that the development team can access the network regardless of its location. The test network consists of a Windows server and two Windows clients. Active Directory service was configured on the server to manage the client computer and to have the possibilities to create group policies. Group policies are used in almost every corporate environment to build rule sets for configurations. These configurations are a core element to check the readiness of a system. The following operating systems were installed in this test network:

Server:
- Windows Server 2016

Clients:
- Windows 10 Pro, Version 1709

The network is structured as followed:

![Test Environment Diagram](image)

Figure 2.1: Test Environment
Readiness for Tailored Attacks and Lateral Movement Detection

2. Test Environment

2.1 User

Three users were configured for the logfarm-network:

<table>
<thead>
<tr>
<th>Name</th>
<th>Privileges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Domain administrator</td>
</tr>
<tr>
<td>Bob</td>
<td>User</td>
</tr>
<tr>
<td>Charlie</td>
<td>User</td>
</tr>
</tbody>
</table>

Table 2.1: Test Environment User

2.2 Difficulties

Various difficulties occurred which are presented in this subsection.

Connect to the virtual machines via Remote Desktop Protocol (RDP)

After setting up the virtual machines on Azure, the developers tried to connect to the devices via the Remote Desktop Protocol but failed. First, the developers suspected the issue was the incoming port rules, so the machines were reinstalled. However, this did not fix the issue. It became apparent that the problem were not the virtual machines (VM), but with the network used to connect to the Microsoft Azure Cloud. Some firewall rules blocked the RDP-connection. In order to avoid this, the developers used a Virtual Private Network (VPN) connection in which these rules did not apply.

Firewall setting for Internet Control Message Protocol (ICMP)

After the virtual network had been set up, the developers tested the connections in the virtual network. The configured Domain Name System (DNS) ran without any problem and could translate all hostnames. Testing the network using Pings showed that almost all clients were receiving pings, but the ping-requests by one client remained unanswered. It transpired that, for some inexplicable reason, the incoming ICMP-firewall-settings were different on this client. After adjusting the setting, the ping-requests were answered positively.

RDP connection for Bob and Charlie

Due to the fact that the user Alice owns domain administrator privileges, this user was able to connect over RDP without an error. Bob and Charlie on the other hand did not have this permission. The developers had to create a group for them, the RDP-Group. This group was then allowed to login over RDP on the clients Win10-Client and Win10-Admin.
3 Analysis

This chapter describes the first step of this project, the research of published technical reports and tools which are considered interesting for this project. The individual sections are again divided into a short description and a conclusion of how valuable this will be for the project. In the case of tested tools, the difficulties during the tests are also discussed.

3.1 BloodHound / SharpHound

3.1.1 Description

BloodHound describes itself on its wiki page on GitHub as follows:

"BloodHound is a single page Javascript web application, built on top of Linkurious, compiled with Electron, with a Neo4j database fed by a PowerShell/C# ingester. BloodHound uses graph theory to reveal the hidden and often unintended relationships within an Active Directory environment. Attacks can use BloodHound to easily identify highly complex attack paths that would otherwise be impossible to quickly identify. Defenders can use BloodHound to identify and eliminate those same attack paths. Both blue and red teams can use BloodHound to easily gain a deeper understanding of privilege relationships in an Active Directory environment." [2]

3.1.2 Difficulties

BloodHound was tested in the test environment which is described later in this chapter. Both the C# and Python ingestors were successfully installed and tested. The only problem which occurred was that the Python-ingestor does not yet run on the latest Python release. One must have a Python 2.7.x version installed to run the scripts successfully.

3.1.3 Conclusion

The most interesting aspect of BloodHound for our project is the way it retrieves its data. Due to the decision that the application, in a first step, only reads the data of the local computer and not the whole domain, BloodHound will only be important in a later part of the project. Their so called ingestor will be used to retrieve the data of a whole network instead of only a local computer.

3.2 Windows Event Logging Forensic Logging Enhancement Services

3.2.1 Description

Windows Event Logging Forensic Logging Enhancement Services (WEFFLES) [3] is a Threat Hunting/Incident Response Console with Windows Event Forwarding and PowerBI [4], coded and published by Microsoft-Security-Employee Jessica Payne. It is built to help set up the Windows Event Forwarding, so that all the collected logs of a system are stored on one centralised server, and afterwards to analyse the collected data. Jessica Payne wrote an installation instruction on the Microsoft TechNet blog [https://blogs.technet.microsoft.com/jepayne/2017/12/08/weffles/]. Once the data is collected the generated weffles.csv file can simply be imported into Excel and start filtering the logs to gain the needed information. Jessica Payne recommends to use PowerBI, a business analytics tool designed by Microsoft. In her published blog she also gives a short introduction on what to look out for, which event ids are important and other useful tips and tricks for detecting suspicious activities in the network.
WEFFELS will not be the product on which this project is based, but could become an important point of reference. The installation guide and other WEFFELS-related documents collected by Jessica Payne provide a lot of information for reading and understanding logs, which will be very helpful for this project. Also an interesting aspect of WEFFLES and the Jessica Payne article is how she visualised the logs, using Microsoft PowerBI.

3.3 Microsoft Security Compliance Toolkit

3.3.1 Description

The Microsoft Security Compliance Toolkit (SCT) [5] allows security administrators to analyse their configured enterprise Group Policy Objects (GPO) in comparison to the Microsoft-recommended GPO baselines. The toolkit comes with several baseline GPO’s for different versions of Microsoft Windows Client and Servers:

- **Windows 10 security baselines**
 - Windows 10 Version 1803 (April 2018 Update), 1709 (Fall Creators Update), 1703 (Creators Update), 1607 (Anniversary Update), 1511 (November Update), 1507

- **Windows Server security baselines**
 - Windows Server 2016
 - Windows Server 2012 R2

- **Microsoft Office security baseline**
 - Office 2016

3.3.2 Difficulties

The toolkit is very simple and could be understood and used without any difficulties. The handling is very intuitive and does not require much training. Please note, however, that the toolkit cannot be used with Windows 10 Home, since Active Directory support is not provided with this version.

3.3.3 Conclusion

This toolkit can be used for a very baseline GPO in enterprise environment. With the delivered baselines it is easy to compare the configured GPO and to see the readiness of the enterprise GPO. The toolkit enables the comparison of different local GPO’s with the policy viewer (see figure 2.2 SCT: Policy Viewer) which are installed on different Clients or Servers to check their consistency.
3. Analysis

In addition, the provided baselines can be used for building new GPO’s. Furthermore, Microsoft delivers with the SCT a Local Group Policy Object Utility (LGPO.exe) to:

- Import and apply policy settings
- Export local policy to a GPO backup
- Parse a registry.pol file to "LGPO text" format
- Build a registry.pol file from "LGPO text"

This toolkit is very interesting, but cannot be used to build on it. The reason for this is that the source code of the complete toolkit is not available. However, it can be used as additional help for checking the readiness of a system and comparing the local policies against templates or other local policies.

Figure 2.2: SCT: Policy Viewer
3. Analysis

3.4 LogonTracer

3.4.1 Description

JPCERT/CCs LogonTracer is a tool built to investigate malicious logons on a system based on the research described in section "3.11 JPCERT/CC - Detecting Lateral Movement in APTs". The tool links hostnames or Internet-Protocol (IP) addresses with the "[...] account name found in logon-related events and displays it as a graph". [6] The following event ids are checked with the tool:

- 4624: Successful logon
- 4625: Logon failure
- 4768: Kerberos Authentication
- 4769: Kerberos Service Ticket
- 4776: NTLM Authentication
- 4672: Assign special privileges

The following figure depicts a sample graph of logins from different users in the test environment:

![LogonTracer: Sample Graph from Test Environment](image)

To use the LogonTracer, only a .evtx-File (Windows Extensible Markup Language (XML) Event Log: export of Windows event logs) is necessary to be uploaded. To get the best result out of LogonTracer an export of the security event log from the domain controller should be used - to get as much information of the network as possible. With the built-in analysis of logins, by using machine learning models and statistical analysis, LogonTracer is able to provide a ranking of the most malicious users which tried to log in. [7]

In addition, LogonTracer provides a timeline for all or selected users to show when each user logged in. The timeline can also be displayed as a graph with the LogonTracer, allowing anomalies to be detected more quickly.
The test environment showed that this graph can quickly become confusing—especially in a larger corporate environment as depicted in figure 2.4 LogonTracer: Confusing Graph from Test Environment. Although only a small environment as described in the section 2 "Test Environment" was used, it turned out that various users wanted to log on to the virtual machines. The reason for this is that the test environment was built in the Microsoft Azure Cloud and is accessible via public IP addresses in the cloud.

Figure 2.4: LogonTracer: Confusing Graph from Test Environment

Nevertheless, with meaningful filters the search can be restricted and the graph can be used efficiently, as shown in figure 2.3 LogonTracer: Sample Graph from Test Environment
3. Analysis

3.4.2 Difficulties

During the test phase of LogonTracer some difficulties were faced. It is pretty easy to get the docker container, but starting LogonTracer was a bit of a challenge. JPCERT/CC gives the following instructions for starting the docker container:

```
Listing 2.1: LogonTracer: given docker run command
$ docker run --detach \
--publish=7474:7474 --publish=7687:7687 --publish=8080:8080 \
-e LTHOSTNAME=[IP_Address] jpcertcc/docker-logontracer
```

The problem was that the parameter [IP_Address] was not described well. If the command docker ps was executed it always showed the following PORTS:

```
Listing 2.2: LogonTracer: docker ps (PORTS)
<table>
<thead>
<tr>
<th>PORTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0:7474-&gt;7474/tcp, 0.0.0.0:7687-&gt;7687/tcp, 7473/tcp, 0.0.0.0:8080-&gt;8080/tcp</td>
</tr>
</tbody>
</table>
```

After some time of investigation and further tests, it turned out that under PORTS the ports respectively IP addresses of the container can be bound to the host. But these are not relevant for the LogonTracer, because it provides a web application under the defined parameter [IP_Address] and it can eventually be reached via localhost:8080. If this parameter was set to 127.0.0.1, the database containing the imported .evtx file could not be accessed. Thus the graph was never displayed. The parameter [IP_Address] set to localhost solved this problem.

```
Listing 2.3: LogonTracer: recommended docker run command
$ docker run --detach \
--publish=7474:7474 --publish=7687:7687 --publish=8080:8080 \
-e LTHOSTNAME=localhost jpcertcc/docker-logontracer
```

3.4.3 Conclusion

The LogonTracer is unique in its form and should not be underestimated for the detection of lateral movements. This is because user access to various components available in the network can be visualised simply and graphically, hence conclusions can be drawn about what has happened.

However, the LogonTracer is not suitable for detection readiness and cannot be used to build on it. Nonetheless, approaches for reading the event log for further work could be used. This tool is also extremely interesting and recommendable for a further detection of lateral movements.
3. Analysis

3.5 Microsoft Monitoring Active Directory for Signs of Compromise

3.5.1 Description

This article "Microsoft Monitoring Active Directory for Signs of Compromise" [8] is about configuration of a solid event log monitoring for Microsoft servers. The article gives a quite a good overview about the audit policy in Microsoft systems and what each policy stands for. The article gives information about the most important audit policies and how noisy (if a lot of data is produced by them) they are. This study does not go into audit policy in detail. Furthermore, the article describes how the policies can be read with powershell.

In this article Microsoft compiles in Appendix L [9] all important event ids which are necessary for a successful detection of APTs and lateral movements.

3.5.2 Conclusion

Due to the fact that audit policies are an important setting for solid event logging, this article and Appendix L will be a central part of the toolkit to be built. As a next step and part of this study, these event ids have to be correlated with the event ids found in the JPCERT/CC's study "Detecting Lateral Movement through Tracking Event Logs" [1] to make a clear statement which event ids have to be logged.

3.6 MITRE Adversarial Tactics, Techniques and Common Knowledge (ATT&CK)

3.6.1 Description

MITRE ATT&CK introduces itself on its website as follows:

"MITRE ATT&CK™ is a globally-accessible knowledge base of adversary tactics and techniques based on real-world observations. The ATT&CK knowledge base is used as a foundation for the development of specific threat models and methodologies in the private sector, in government, and in the cybersecurity product and service community." [10]

The portal offers a variety of attacks and their patterns, which are currently known in different operating systems. MITRE ATT&CK describes the attack in short words and then lists possibilities for detection and mitigation. The portal also describes various attack tools, their targets and effects on the system. In addition, the corresponding attacks are always cross-referenced. This is a great advantage for a quick search, especially when time is of the essence.

3.6.2 Conclusion

Although many attacks are described and how they can be detected and fended off, MITRE ATT&CK is not quite suitable for our task. The readiness of a system to detect tailored attacks and lateral movements is only roughly described and would be associated with a time-consuming analysis in order to draw exact conclusions.
3.7 Sysmon

3.7.1 Description

System Monitor (Sysmon) is a Windows system service and device driver that, once installed on a system, remains resident across system reboots to monitor and log system activity to the Windows event log. It provides detailed information about process creations, network connections, and changes to file creation time.[11]

Sysmon logs several events on the system which are partly logged by default too. For example, the event "A new process has been created" with the identifier (ID) 4688 is logged by Sysmon with the ID 1 "Process Creation". The problem is that the default logged event with the ID 4688 logs only the executable file (EXE) name as well as the including path. But attackers want to stay below the radar, so they might replace the original EXE a with malicious one and rename it like the original. Hence, there is no way to determine with the system based event log entry 4688 if the original EXE was executed. Sysmon eliminates exactly this gap by logging not only the name and path of the EXE but also the hash value of the EXE. Ergo Sysmon brings a big advantage to detect if a malicious EXE was executed or not. Therefore a reference hash value of the executed EXE is required to compare the hash values on its correctness.[12]

3.7.2 Conclusion

Due to the fact that Sysmon will log not only the name of an executable but also the corresponding hash value, Sysmon is an important tool to be enabled for solid detection of attacks. So Sysmon has to be detected if it is running or not to prepare an environment for a good readiness.

3.8 Sysmon Tools

3.8.1 Description

Sysmon Tools [13] contains some useful functions to make better use of Sysmon. Among other things there are different views for the representation of the single entries which were recorded by Sysmon. A Process View is provided which can be used to examine a process in more detail. Related processes are taken into account and represented in a simple data-flow-like view, sorted by chronological order. With the Map View you can include geo-locate IP addresses during the import phase and Map View tries to geo-map the network destinations with ipstack [14]. The All Events View represents a full search by Sysmon and can be filtered and grouped accordingly. Furthermore, Sysmon Tools offers a Sysmon Shell, which can be used to create a customized XML configuration for Sysmon using a graphical user interface (GUI). Templates are also provided for further building.

3.8.2 Conclusion

This tool can also be a great help for detecting attacks and, with the Sysmon Shell, a robust configuration for Sysmon can be created. However, Sysmon Tool will have no basis for this project.
3.9 sysmon-modular

3.9.1 Description

With sysmon-modular [15] a clean configuration of the Windows system service Sysmon, an xml-file which is loaded by Sysmon, is provided. Noisy process creations, which are made by legitimate programs, are suppressed as far as possible by Sysmon. The tool offers the possibility and it is expressly recommended by the developer to adapt the configuration to the respective organisation. Furthermore, sysmon-modular implements various attacks in MITRE ATT&CK for detection with Sysmon. It offers the possibility to detect the attacks shown in the figure 2.5 with Sysmon.

![Figure 2.5: Detectable attacks with sysmon-modular](image)

3.9.2 Conclusion

Sysmon-modular offers a very good basic configuration for Sysmon based on the platform MITRE ATT&CK which is widely used in the security scene. Unfortunately, sysmon-modular was discovered when decisions were made to develop a tool based on the study "Detecting Lateral Movement through Tracking Event Logs" by JPCERT/CC. The readiness of a system with the basis of MITRE ATT&CK patterns would probably have had an even greater impact. However, Sysmon-modular will most likely not be included in the tool during this study, unless there are still enough time reserves for such an integration. This tool would better fit the goal to realise a "Readiness Optimizer" as initially mentioned in the task definition.
3.10 CryptoAPI 2.0

3.10.1 Description

The Microsoft feature CryptoAPI 2.0 (CAPI2) Diagnostics provides the ability to collect detailed information about certificate chain validation, certificate store operations and signature verification. CAPI2 in doubt extremely important for any Public Key Infrastructure (PKI) to perform several security based tasks, such as

- Build and verify certificate chains
- Manage per-user and per-computer certificate stores
- Encrypt/decrypt, encode/decode and sign/verify messages

Hence, CAPI2 enables an organisation to secure its communications and business transactions. Identification of users, devices or organisation as well as signed e-mail, code signing and secure web browsing is made possible with today’s standards of hash-functions and encryption due to CAPI2. PKI problems are not always easy to troubleshoot and therefore it is necessary to have good diagnostic capabilities in such cases.

\textit{CAPI2 Diagnostics in Windows Vista1 provides logging of detailed information about certificate validation, network retrievals, revocation, and other low-level API results and errors. [...] utilizes the event logging and Event Viewer to provide better logging and troubleshooting capabilities for PKI applications based on the CAPI2 API set. [16]}

3.10.2 Conclusion

To detect whether a system is ready for a good detection of lateral movements and APTs, CAPI2 is a core component to be logged in every system and CAPI2 Diagnostics must be enabled on a system. Hence, it is necessary to detect if CAPI2 is enabled on the system. On the other hand, CAPI2 Diagnostics produces a lot of events and therefore the log size should be chosen wisely. For this reason the recommendation of 4 Megabyte (MB) from Microsoft shall be applied. [16]

1Windows Vista and above
3. Analysis

3.11 JPCERT/CC - Detecting Lateral Movement in APTs

3.11.1 Description

This document [17] is from a presentation by Shingo Abe, a JPCERT/CC employee. In it he describes how to find system intruders more effectively using Windows Event Logs. The collected data is used to detect inconsistencies more effectively, such as when an administrator logs on to another machine or when an administrator logs on suspiciously often.

3.11.2 Conclusion

This presentation contains interesting information which could be built into the project at a later point. The information this document contains is more suitable for monitoring purposes than for checking the readiness of a system.

3.12 JPCERT/CC - Detecting Lateral Movement through Tracking Event Logs

3.12.1 Description

This is a document [1] JPCERT/CC published in the year 2017. It describes how, in their experience, attackers proceed with lateral movement. In a very detailed 81-page report they describe the procedure step-by-step, the tools used and, what is most interesting for the project, the logs generated while doing so.

3.12.2 Conclusion

This report will have the biggest impact on this project, it shows which logs have to be read in any case. In addition, JPCERT/CC describes in this report which configurations are necessary for solid logging. The appendix not only describes the individual event log ids, but also the audit policy that can be used to achieve them. For this reason, the checklist to be used will mainly be based on this report. With the provided information we see the greatest potential to develop a suitable tool for the accomplishment of the task in the given time. The given information of the configuration settings in JPCERT/CCs study appendix must be correlated with the "Advanced security auditing Frequently Asked Questions (FAQ)" [18] in order to define the right auditing settings so that the right events are captured.

3.13 Conclusion from the analysis

Many of the tools analysed have followed a very interesting approach. Unfortunately, none of these tools can form a basis for this work. For this reason, a completely new tool is designed. Maybe some of the approaches will flow into the tool, like the "Ingestor" of BloodHound or the visualization of WEFFLES. The analysed documents of JPCERT form the basis of this work. They show which events have to be logged to detect a possible attack.
4 Design

This section describes the design of the SRI, how the tool is built, and what to look out for.

4.1 Decision for a new Tool

At the beginning it was not clear how the tool should be built exactly and what the functionality and scope should be based on. After a detailed analysis of different tools, reports and studies, it was possible to better estimate how an efficient detection of the readiness of a system can be implemented. It would have been desirable to be able to build on an existing tool, but as shown in a five-week analysis, there is no such tool. For this reason it was decided to develop a tool based on JPCERT/CCs study. The configurations in the "Advanced Audit Settings" of the GPOs are to be checked accordingly and in a second step the event logs are to be searched for the EventIDs.

4.2 Mandatory Event Logs

The following tables lists the event logs which are mandatory and must be logged based on the study "JPCERT/CC - Detecting Lateral Movement through Tracking Event Logs":

<table>
<thead>
<tr>
<th>EventID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>82222</td>
<td>Shadow copy has been created</td>
</tr>
<tr>
<td>200012</td>
<td>Driver Management concluded the process to install driver</td>
</tr>
</tbody>
</table>

Table 2.2: Mandatory System Event Logs

<table>
<thead>
<tr>
<th>EventID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1022</td>
<td>Task completed</td>
</tr>
<tr>
<td>1062</td>
<td>A task has been registered</td>
</tr>
<tr>
<td>1292</td>
<td>A task process has been created</td>
</tr>
<tr>
<td>2002</td>
<td>The operation that has been started</td>
</tr>
<tr>
<td>2012</td>
<td>The operation has been completed</td>
</tr>
</tbody>
</table>

Table 2.3: Mandatory TaskScheduler Event Logs

<table>
<thead>
<tr>
<th>EventID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>Creating WSMAN Session</td>
</tr>
<tr>
<td>1692</td>
<td>User authentication authenticated successfully</td>
</tr>
</tbody>
</table>

Table 2.4: Mandatory Windows Remote Management Event Logs

2Recorded by default Windows settings
Readiness for Tailored Attacks and Lateral Movement Detection

4. Design

<table>
<thead>
<tr>
<th>EventID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21(^2)</td>
<td>Remote Desktop Services: Session logon succeeded</td>
</tr>
<tr>
<td>24(^2)</td>
<td>Remote Desktop Services: Session has been disconnected</td>
</tr>
</tbody>
</table>

Table 2.5: Mandatory TerminalServices-LocalSessionManager Event Logs

<table>
<thead>
<tr>
<th>EventID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(^3)</td>
<td>Process created</td>
</tr>
<tr>
<td>2(^3)</td>
<td>A process changed a file creation time</td>
</tr>
<tr>
<td>3(^3)</td>
<td>Process terminated</td>
</tr>
<tr>
<td>8(^3)</td>
<td>CreateRemoteThread</td>
</tr>
</tbody>
</table>
| 9\(^3\) | RawAccessRead: detects when the process is using \\\n\nTable 2.6: Mandatory Sysmon Event Logs

<table>
<thead>
<tr>
<th>EventID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>102(^2)</td>
<td>Task completed</td>
</tr>
<tr>
<td>106(^2)</td>
<td>Task registered</td>
</tr>
<tr>
<td>129(^2)</td>
<td>Created Task Process</td>
</tr>
<tr>
<td>200(^2)</td>
<td>Action started</td>
</tr>
<tr>
<td>201(^2)</td>
<td>Action completed</td>
</tr>
</tbody>
</table>

Table 2.7: Mandatory TaskScheduler Event Logs

<table>
<thead>
<tr>
<th>EventID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6(^2)</td>
<td>Creating WSMan Session</td>
</tr>
<tr>
<td>169(^2)</td>
<td>User authentication: authenticated successfully</td>
</tr>
</tbody>
</table>

Table 2.8: Mandatory Windows Remote Management Event Logs

<table>
<thead>
<tr>
<th>EventID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21(^2)</td>
<td>Remote Desktop Services: Session logon succeeded</td>
</tr>
<tr>
<td>24(^2)</td>
<td>Remote Desktop Services: Session has been disconnected</td>
</tr>
</tbody>
</table>

Table 2.9: Mandatory Windows Local Session Manager Event Logs

\(^2\)Recorded by default Windows settings
\(^3\)Recorded by default Sysmon settings
4. Design

Security

<table>
<thead>
<tr>
<th>EventID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>104^2</td>
<td>The System log file was cleared</td>
</tr>
<tr>
<td>4624</td>
<td>An account was successfully logged on</td>
</tr>
<tr>
<td>4634</td>
<td>An account was logged off</td>
</tr>
<tr>
<td>4648</td>
<td>A logon was attempted using explicit credentials</td>
</tr>
<tr>
<td>4656</td>
<td>A handle to an object was requested</td>
</tr>
<tr>
<td>4658</td>
<td>The handle to an object was closed</td>
</tr>
<tr>
<td>4660</td>
<td>An object was deleted</td>
</tr>
<tr>
<td>4661</td>
<td>A handle to an object was requested</td>
</tr>
<tr>
<td>4663</td>
<td>An attempt was made to access an object</td>
</tr>
<tr>
<td>4672</td>
<td>Special privileges assigned to new logon</td>
</tr>
<tr>
<td>4673</td>
<td>A privileged service was called</td>
</tr>
<tr>
<td>4688</td>
<td>A new process has been created</td>
</tr>
<tr>
<td>4689</td>
<td>A process has exited</td>
</tr>
<tr>
<td>4690</td>
<td>An attempt was made to duplicate a handle to an object</td>
</tr>
<tr>
<td>4720</td>
<td>A user account was created</td>
</tr>
<tr>
<td>4726</td>
<td>A user account was deleted</td>
</tr>
<tr>
<td>4728</td>
<td>A member was added to a security enabled global group</td>
</tr>
<tr>
<td>4729</td>
<td>A member was removed from a security enabled global group</td>
</tr>
<tr>
<td>4768</td>
<td>A Kerberos authentication ticket (TGT) was requested</td>
</tr>
<tr>
<td>4769</td>
<td>A Kerberos service ticket was requested</td>
</tr>
<tr>
<td>4946</td>
<td>A change has been made to Windows Firewall exception list. A rule was added</td>
</tr>
<tr>
<td>5140</td>
<td>A network share object was accessed</td>
</tr>
<tr>
<td>5142</td>
<td>A network share object was added</td>
</tr>
<tr>
<td>5144</td>
<td>A network share object was deleted</td>
</tr>
<tr>
<td>5145</td>
<td>A network share object was accessed</td>
</tr>
<tr>
<td>5154</td>
<td>WFP has permitted an application or service to listen on a port for incoming connections</td>
</tr>
<tr>
<td>5156</td>
<td>WFP has allowed a connection</td>
</tr>
<tr>
<td>7036^2</td>
<td>The service state has changed</td>
</tr>
<tr>
<td>7045^2</td>
<td>A service was installed in the system</td>
</tr>
</tbody>
</table>

Table 2.10: Mandatory Security Event Logs

^2Recorded by default Windows settings
4.3 Correlation: Advanced Audit Policy Setting and Event Log IDs

In this section, the "Advanced Audit Policies" required to trigger the corresponding event logs are shown in tables. Based on these tables, the "Advanced Audit Policies" are checked for correctness with the tool. There are several combinations of settings which can be configured:

Not Configured:
Nothing selected

No Auditing:
"Configure the following audit events:"

Success (S):
"Success"

Failure (F):
"Failure"

Success and Failure (S, F):
"Success” and "Failure"

![Figure 2.6: Advanced Audit Policy - Logon/Logoff - Audit Special Logon](image)

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>EventIDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit Kerberos Authentication Service</td>
<td>4768 (S, F)</td>
</tr>
<tr>
<td>Audit Kerberos Service Ticket Operations</td>
<td>4769 (S, F)</td>
</tr>
</tbody>
</table>

Table 2.11: Advanced Audit Policy Setting Account Logon

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>EventIDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit User Account Management</td>
<td>4720(S), 4726(S), 4738(S), 4724(S), 4722(S)</td>
</tr>
<tr>
<td>Audit Security Group Management</td>
<td>4728(S, F), 4729(S, F), 4737(S, F)</td>
</tr>
</tbody>
</table>

Table 2.12: Advanced Audit Policy Setting Account Management

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>EventIDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit Process Creation</td>
<td>4688(S)</td>
</tr>
<tr>
<td>Audit Process Termination</td>
<td>4689(S)</td>
</tr>
</tbody>
</table>

Table 2.13: Advanced Audit Policy Setting Logon/Logoff
Readiness for Tailored Attacks and Lateral Movement Detection

4. Design

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>EventIDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit Logon</td>
<td>4624(S), 4648(S)</td>
</tr>
<tr>
<td>Audit Logoff</td>
<td>4634(S)</td>
</tr>
<tr>
<td>Audit Special Logon</td>
<td>4672(S)</td>
</tr>
</tbody>
</table>

Table 2.14: Advanced Audit Policy Setting Logon/Logoff

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>EventIDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit Detailed File Share</td>
<td>5145(S, F), 5142(S), 5144(S)</td>
</tr>
<tr>
<td>Audit File Share</td>
<td>5140(S, F)</td>
</tr>
<tr>
<td>Audit File System</td>
<td>4656(S, F), 4658(S), 4660(S), 4663(S), 4670(S)</td>
</tr>
<tr>
<td>Audit Filtering Platform Connection</td>
<td>5154(S), 5156(S), 5447(S, F)</td>
</tr>
<tr>
<td>Audit Handle Manipulation</td>
<td>4658(S), 4690(S)</td>
</tr>
<tr>
<td>Audit Kernel Object</td>
<td>4656(S, F), 4658(S), 4660(S), 4663(S)</td>
</tr>
<tr>
<td>Audit Other Object Access Events</td>
<td>4698(S, F)</td>
</tr>
<tr>
<td>Audit Registry</td>
<td>4656(S, F), 4658(S), 4660(S), 4663(S)</td>
</tr>
<tr>
<td>Audit SAM</td>
<td>4661(S, F)</td>
</tr>
</tbody>
</table>

Table 2.15: Advanced Audit Policy Setting Object Access

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>EventIDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit MPSSVC Rule-Level Policy Change</td>
<td>4946(S)</td>
</tr>
</tbody>
</table>

Table 2.16: Advanced Audit Policy Setting Policy Change

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>EventIDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit Non Sensitive Privilege Use</td>
<td>4673(S, F)</td>
</tr>
<tr>
<td>Audit Sensitive Privilege Use</td>
<td>4673(S, F)</td>
</tr>
</tbody>
</table>

Table 2.17: Advanced Audit Policy Setting Privilege Use
4.4 Attack Categories

JPCERT/CC has divided the attack tool examined in their report "JPCERT/CC - Detecting Lateral Movement through Tracking Event Logs" into several attack categories. When developing the tool, the developers relied on this list and the result visualization will show them as well for sensitization:

<table>
<thead>
<tr>
<th>Attack category</th>
<th>Tools</th>
</tr>
</thead>
</table>
| Command Execution | PsExec
WMIC
Powershell Remote Command Execution
wmiexec.vbs
BeginX
WinRM
WinRS
AT Command
BITS |
| Password Hash Acquisition | PWDump7
PWDumpX
Quarks PwDump
Mimikatz (Obtaining Password Hash)
Mimikatz (Obtaining Ticket)
WCE (Windows Credentials Editor)
gsecdump
lslsas
Find-GPOPasswords.ps1
Mail PassView
WebBrowserPassView
Remote Desktop PassView |
| Malicious Communication Relay (Packet Tunneling) | Htran
Fake wpad |
| Remote Login | RDP |
| Pass-the-ticket, Pass-the-hash | WCE (Remote Login)
Mimikatz (Remote Login) |
| Escalation to SYSTEM Privileges | MS14-058 Exploit
MS15-078 Exploit |
4. Design

<table>
<thead>
<tr>
<th>Privilege Escalation</th>
<th>SDB UAC Bypass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capturing the DomainAdministrator and AccountCredentials</td>
<td>ntdsutil</td>
</tr>
<tr>
<td></td>
<td>vssadmin</td>
</tr>
<tr>
<td>Adding or Deleting a Local User/Group</td>
<td>net user</td>
</tr>
<tr>
<td>File Sharing</td>
<td>netuse</td>
</tr>
<tr>
<td></td>
<td>net share</td>
</tr>
<tr>
<td></td>
<td>icacls</td>
</tr>
<tr>
<td>Capturing Active Directory Database</td>
<td>ntdsutil</td>
</tr>
<tr>
<td>(Creation of Domain Administrator or</td>
<td>vssadmin</td>
</tr>
<tr>
<td>Addition of a User to Administrator Group)</td>
<td></td>
</tr>
<tr>
<td>Deleting Evidence</td>
<td>sdelete</td>
</tr>
<tr>
<td></td>
<td>timestomp</td>
</tr>
<tr>
<td>Deleting Eventlog</td>
<td>wevutil</td>
</tr>
<tr>
<td>Acquisition of Account Information</td>
<td>csde</td>
</tr>
<tr>
<td></td>
<td>ldifde</td>
</tr>
<tr>
<td></td>
<td>dsquery</td>
</tr>
</tbody>
</table>

Table 2.18: Attack Categories [1]
4. Design

4.5 Audit Policy Priority

This section defines the priority of each audit policy and provides a statement for each priority definition.

<table>
<thead>
<tr>
<th>Audit Policy</th>
<th>Prio</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit File System</td>
<td>High</td>
<td>Is needed to be able to detect many attack categories, events are logged when users attempt to access file system objects</td>
</tr>
<tr>
<td>Audit Kernel Object</td>
<td>High</td>
<td>Is needed to be able to detect many attack categories, events are logged when a process has exited</td>
</tr>
<tr>
<td>Audit Process Creation</td>
<td>High</td>
<td>Is needed to be able to detect many attack categories, events are logged when a process is created (starts)</td>
</tr>
<tr>
<td>Audit Process Termination</td>
<td>High</td>
<td>Is needed to be able to detect almost all attack categories, events are logged when users attempt to access the system kernel</td>
</tr>
<tr>
<td>Audit Registry</td>
<td>High</td>
<td>Is needed to be able to detect many attack categories, events are logged when attempt was made to access registry objects</td>
</tr>
<tr>
<td>Audit Special Logon</td>
<td>High</td>
<td>Events are logged when a member of a "Special Group", that has administrator-equivalent privileges, logs on</td>
</tr>
<tr>
<td>Force Audit Policy Subcategory</td>
<td>High</td>
<td>Force audit policy subcategory settings to override audit policy category settings</td>
</tr>
<tr>
<td>Sysmon</td>
<td>High</td>
<td>Logs detailed information about process creations, network connections, and changes to file creation time</td>
</tr>
<tr>
<td>Audit Detailed File Share</td>
<td>Medium</td>
<td>Events are logged when users attempt to access files and folders on a shared folder</td>
</tr>
<tr>
<td>Audit Logon</td>
<td>Medium</td>
<td>Is needed to be able to detect many attack categories, events are logged when a user is logging on to a device</td>
</tr>
<tr>
<td>Audit MPSSVCRuleLevelPolicyChange</td>
<td>Medium</td>
<td>Events are logged when changes are made to policy rules for the Microsoft Protection Service</td>
</tr>
<tr>
<td>Audit Security Group Management</td>
<td>Medium</td>
<td>Microsoft prioritises this audit setting as "Medium", Events are logged when specific security group management tasks are performed</td>
</tr>
<tr>
<td>Audit Sensitive Privilege Use</td>
<td>Medium</td>
<td>Logs events that show the usage of sensitive privileges, for example "Act as part of the operating system"</td>
</tr>
<tr>
<td>Audit User Account Management</td>
<td>Medium</td>
<td>Microsoft prioritises this audit setting as "Medium", when specific user account management tasks are performed</td>
</tr>
<tr>
<td>Audit File Share</td>
<td>Low</td>
<td>Logs events related to file shares: creation, deletion, modification, and access attempts</td>
</tr>
</tbody>
</table>
4. Design

<table>
<thead>
<tr>
<th>Table 2.19: Audit Policy Priority [20]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit Filtering Platform Connection</td>
</tr>
<tr>
<td>Audit Handle Manipulation</td>
</tr>
<tr>
<td>Audit Kerberos Authentication Service</td>
</tr>
<tr>
<td>Audit Kerberos Service Ticket Operations</td>
</tr>
<tr>
<td>Audit Logoff</td>
</tr>
<tr>
<td>Audit Non Sensitive Privilege Use</td>
</tr>
<tr>
<td>Audit Other Object Access Events</td>
</tr>
<tr>
<td>Audit SAM</td>
</tr>
<tr>
<td>CAPI2</td>
</tr>
<tr>
<td>CAPI2LogSize</td>
</tr>
</tbody>
</table>
4.6 Domain Analysis

The following section describes the problem domain which is faced during this project. Despite the decision to not programme a classic object orientated solution, there are several things to be aware of and to think through carefully. For this reason, building a domain model is a simple and suitable technique to use. The following figure 2.7 shows the domain model and will be explained in some details afterwards.

Figure 2.7: Domain Model
4. Design

4.6.1 Network

The class network depicts the organization's wide network which is used to connect all clients and servers together. In this project, the main goal is to locally detect the readiness of the system and not to extend the detection for a system-wide infrastructure. For further development on this project and a system-wide extension, the network is already considered in this domain model.

4.6.2 Computer

A computer illustrates either a client like a Windows 10 machine or a server, in particular, a domain controller running on a Windows Server 2016. In principle, however, every Windows computer is represented. A computer is a core component in our project, because the detection is done on a single client or server.

4.6.3 Event

An event represents a single event log entry in simplified form.

4.6.4 AuditPolicy

A single audit policy setting represents one or more event IDs logged by this configuration.

AuditPolicy displays the individual settings of the audit policies of the group policy, which can be found via \texttt{gpedit.msc} under "Computer Configuration \rightarrow Windows Settings". However, only the settings under "Security Settings \rightarrow Advanced Audit Policy Configuration" are considered and not the settings under "Security Settings \rightarrow Local Policies \rightarrow Audit Policy". The reason for this is that Microsoft recommends that only one of the two policies is used:

\begin{quote}
[...]
do not use both the basic audit policy settings under Local Policies | Audit Policy and the advanced settings under Security Settings | Advanced Audit Policy Configuration.

Using both basic and advanced audit policy settings can cause unexpected results in audit reporting. [18]
\end{quote}

4.6.5 Reference

\textbf{ActualList} The ActualList represents the current state of the system. It reflects the event log IDs that have occurred and the audit policies that have been set.

\textbf{TargetList} The TargetList represents either the list of event logs or configured audit policies which must be present for a solid detection of attacks.

\textbf{DeltaList} Based on the required lists (audit policies, event logs) as well as the current state of the computer, the DeltaList shows which settings are missing in the audit policies.

4.7 Conclusion from the design

The design of the "System Readiness Inspector" will be based on the shown tables in this section. The tables of the sections "4.4 Attack Categories" and "4.5 Audit Policy Priority" have high priority, they are essential for the evaluation and visualization of the SRI. As seen in "4.6 Domain Analysis" the SRI reads a list of event logs and one of the audit policy settings. These lists will be compared against a predefined "target-list" which is based on the study "JPCERT/CC - Detecting Lateral Movement through Tracking Event Logs". Wrong or missing settings will be highlighted.
5 System Architecture

In this section the following main question is answered:

"What would a system architecture look like to fulfill the described problem domain?"

This includes the coverage of use cases, non-functional requirements, technologies used and how the tool will be designed.

5.1 Use Cases (UC)

A visual representation of the use cases with a use case diagram was deliberately omitted, because there is only one actor involved - the security advisor. The actor is not specifically mentioned in the use cases every time, because it is always the same. During the elaboration phase, it was decided in consultation with the client that the project would be limited to a Readiness Analyser only.

5.1.1 UC01 - Read Resultant Set of Policies

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The specified audit policies are read and saved in a temporary file.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precondition</th>
</tr>
</thead>
<tbody>
<tr>
<td>The system is running and the tool must possess administrator permissions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main Success Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Read the specified audit policies from the system</td>
</tr>
<tr>
<td>2. Save the needed information from the audit policies in a temporary file for analysis purposes.</td>
</tr>
</tbody>
</table>

5.1.2 UC02 - Analyse Audit Policies

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The values of the audit policies, which were saved as a temporary file in UC01, are gathered and written into a separate file.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precondition</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC01 is fulfilled: the temporary file is available.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main Success Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The temporary files can be read</td>
</tr>
<tr>
<td>2. Creates a list current audit policy values</td>
</tr>
</tbody>
</table>
5. System Architecture

5.1.3 UC03 - Find Event Logs

Description
The defined event logs read and then saved into a temporary file. This file contains a list of occurred events which are filtered so that each event ID occurred uniquely.

Precondition
The system is running and must have valid event logs. The tool must possess administrator permissions.

Main Success Scenario
1. Search for the specified event logs from the local system
2. Save the result from the search in a temporary file for analysis purposes.

5.1.4 UC04 - Analyse Found Event Logs

Description
The implemented logic analyses, by defined event ids, which events occurred or are missing. Then creates a list of specified events and lists the state of the event as missing or present.

Precondition
UC03 is fulfilled: the temporary file is available.

Main Success Scenario
1. The temporary file can be read
2. The list with the defined event ids is available
3. Create a list of events which occurred and which are missing

5.1.5 UC05 - Display missing or wrong system configuration

Description
The list created in UC02 is compared to the "target-list" of defined audit settings. Based on this list and the one created in UC04 the user gets an overview of missing configurations (the result) which would improve the readiness of the system for a good attack detection.

Precondition
The lists from UC02 and UC04 are available.

Main Success Scenario
1. Displays a visual output of missing or wrong system configurations
5.1.6 UC06 - Save Result to specific path

Description
The actor has the possibility to save the overview from UC05 to a file in a specific path defined by the actor himself. This file contains the result from UC05 in a descriptive way. The metadata is stored at the same path.

Precondition
UC05 is fulfilled: the result, respectively the overview is available

Main Success Scenario
1. A file is saved to a specific path with the result from UC05
2. The path can be defined by the actor

5.1.7 UC07 - Main Script

Description
The actor is able to use the implemented functionalities in an easy way. Therefore the actor requires the script to be used with simple arguments to run the script in its different given modes. More specifically the actor should be faced with the possibility to run the script online (check the current system) and offline (check any system with provided exports). In addition, the actor is able to call a help function of the script to get more information about the script itself and how to use it.

Precondition
All functions and process flows have to be implemented and defined.

Main Success Scenario
1. The actor can call all functionalities just through the main script with appropriate arguments
2. The actor can call a helper function to get information how the script is supposed to use
5.1.8 UC08 - Get Domain Information

Description
The actor has the possibility to gather information about single or all domain group policies. This information should be processed and analyzed in the same way as the local gathered data.

Precondition
Access to SYSVOL is possible.

Main Success Scenario
1. The actor gets a result about the readiness of domain group policies which are of interest.

5.2 Non Functional Requirements

<table>
<thead>
<tr>
<th>NFR-No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRF01</td>
<td>After using the Toolkit the system must remain in the status quo. More specifically, the system shall not deliberately alter any existing entry in the event logs and registry. However, the tool may produce new event logs.</td>
</tr>
<tr>
<td>NRF02</td>
<td>The user shall not notice significant performance degradation from the system when using the Toolkit.</td>
</tr>
<tr>
<td>NRF03</td>
<td>The Toolkit must be portable with no installation procedure before use.</td>
</tr>
<tr>
<td>NRF04</td>
<td>The minimal target version of the system for the Toolkit to run must be Microsoft Windows 10 Professional or Microsoft Server 2016.</td>
</tr>
<tr>
<td>NRF05</td>
<td>The Toolkit runs in one go, but can also be executed in single steps with the possibility to skip single steps (pause/abort in case of performance problems)</td>
</tr>
</tbody>
</table>

Table 2.20: Non Functional Requirements
5. System Architecture

5.3 Technologies

5.3.1 Chosen Technologies & Frameworks

PowerShell & Visual Studio Code
The decision as to which technology to use, was made in favour of PowerShell. The reason why Power-Shell was used, was that it is close to the Microsoft operating system and that it has a large and detailed documentation at its disposal. Furthermore, PowerShell fulfills the non functional requirement of a portable script without any installation perfectly.

The scripts are written in Microsoft Visual Studio Code [21] with the extension packet PowerShell. Visual Studio code is preferred to PowerShell Integrated Scripting Environment (PowerShell ISE) because it only requires working in one Integrated Development Environment (IDE) for implementation and documentation.

Pester & PSCoedeHealth
Pester [22] is used as a test framework to provide tests for the developed functions. The assumption is made that the test coverage will not be at 100% because several functions depend on system internal functions and outputs. Hence, the possibilities to provide tests for all functions would be illusory.

PSCoedeHealth [23] serves as a metric measurement framework and allows to make statements about the code quality and maintainability. PSCoedeHealth uses a variety of metrics like the code length, complexity, smells, issues and violations of best practices as well as test coverage.

LaTeX& Visual Studio Code
The documentation is written with LaTeX in Visual Studio Code with the LaTeX Workshop extension. The main reason for LaTeX was that the developers are already familiar with it. Furthermore, LaTeX offers a very simple way for referencing sources. On the other hand, we made the experience that with LaTeX the formatting is more reliable than for example when Microsoft Word is used.

Azure Cloud
The test environment is set up, as described in section "2 Test Environment", in the "Microsoft Azure Cloud" [24]. One server and two clients form a virtual network, this enables developers to access it from anywhere to any given time. A disadvantage is the changing public IP-addresses to access the VMs. In the end, the advantages outweigh the disadvantages.

GitHub
GitHub [25] is used as a version control tool for source code and documentation. GitHub has been elected because of its good reputation and the experience the developers already gained with.

Redmine
Redmine [26] will be used as the project management tool. It will help to manage all use cases and tasks so that the overview of the work to be done will not be lost. Furthermore, a detailed time recording can be made.
Continuous Integration

Continuous Integration (CI) for Powershell is unfortunately not very widespread as has been shown after some time of research. One possible reason for this is that no build artifacts occur with Powershell. Fortunately, the article "Converting a PowerShell Project to use Azure DevOps Pipelines" [27] by Daniel Scott-Raynsford was found, which describes in detail how a CI environment can be set up in Microsoft Azure DevOps. Due to the fact that Azure DevOps offers a very simple and clear handling, as well as supports all common operating systems (Linux, Windows and MacOS), it was decided to set up the CI environment in Azure DevOps. The structure and the important findings are described in the developers manual.

5.3.2 Rejected Technologies

Python

The decision to use PowerShell instead of Python was made because the developers do not have much experience with Python. Also PowerShell is closer to the Microsoft operating system. With Python there is no guarantee that the libraries which would be used are as powerful to solve the requirements.

5.4 Sequence Diagram

This section describes the process of the toolkit and explain the individual steps in detail. As mentioned in the Use Cases, the actor of this toolkit will be a security advisor, who will execute the toolkit.

![Sequence Diagram](image-url)

Figure 2.8: Sequence Diagram SystemReadinessInspector - SRI
Readiness for Tailored Attacks and Lateral Movement Detection

5. System Architecture

5.4.1 GetAuditPolicy()

This task is responsible to get all audit policies, which are relevant for logging the right events according to JPCERT/CCs study. To gather all information about the audit policies and the current state of its configuration the Resultant Set of Policies (RSoP) [28] must be read. RSoP is a Microsoft snap-in to create a detailed report about the applied policy settings.

5.4.2 AnalyseAuditPolicy()

In this task the RSoP from the task GetAuditPolicy(), which is represented as a XML-File, is going to be analysed and all values of the defined audit settings are gathered and written as a result of this analysis, stored in a XML-based format in a temporary file.

5.4.3 GetEventLog()

This task is responsible for getting the event logs from the system. Therefore, the command Get-EventLogs [29] retrieves all logs from 'System' and 'Security'. With the command wevutil the 'Application and Service'-Logs are read out. These logs are, to be analysed later, saved as a 'CSV' file to the current path were the PowerShell is running.

5.4.4 AnalyseEvents()

In this task the created command-separated values file (CSV) from GetEventLog() is used to analyse the collected logs. They are compared to a list provided by JPCERT/CC to find out if these events already occurred. The result of this comparison will be stored as a 'XML' file in order to visualise it.

5.4.5 VisualiseResults()

The resulting XML-files from AnalyseEvents() and AnalyseAuditPolicy() are gathered and compared with a target checklist, which is based on the recommendation from JPCERT/CCs study (see 3.12 JPCERT/CC - Detecting Lateral Movement through Tracking Event Logs). Incorrect or missing configuration is highlighted in red, correct configurations in green. The event logs are listed as missing or present.
6 Implementation

This section shows the implementation of the logic. Divided according to the script and its activities, the results of the script are shown first. The second part describes the approach which was taken, which ideas were not implemented and why not. In the third part, the implementation part, the used code is described and explained. The code shown may differ from the original code for reasons of legibility or comprehensibility, but reflects the implementation as intended.

6.1 Main Script: SRI

The aim of the main script is to supply the user with various procedures to evaluate the readiness of audit policies and/or event logs. However, the user is not meant to use single functions provided by the modules because most functions provide just a metaset of data in order to make a statement of the readiness. For this reason, the main script is able to be called with various parameter for the different procedures. Moreover, the user gets a help functionality (via PowerShells common Get-Help) to provide an overview of parameter combinations.

6.1.1 Result

The various procedures/modes provided by the main script, with eventual additional parameter, are:

-Online, -Offline, -GroupPolicy and -AllGroupPolicies

<table>
<thead>
<tr>
<th>Listing 2.4: SRI Main Script Parameter Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS C:>./sri.ps1 [-Online] [-OnlineExportPath <String>] [-CAPI2LogSize <Int32>]</td>
</tr>
<tr>
<td>PS C:>./sri.ps1 [-GroupPolicy] [-GroupName] <String></td>
</tr>
<tr>
<td>PS C:>./sri.ps1 [-AllGroupPolicies]</td>
</tr>
</tbody>
</table>

Note: Mandatory parameter are underlined.

- **Online**

The current system which is calling the script will be checked on its readiness.

<table>
<thead>
<tr>
<th>PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>No parameter</td>
</tr>
<tr>
<td>-OnlineExportPath</td>
</tr>
<tr>
<td>-CAPI2LogSize</td>
</tr>
</tbody>
</table>
Offline

Some system will be checked on its readiness - by default audit policies and event log are analysed. Export files of this system are required.

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ImportPath</td>
<td>Defines where the required files rsop.xml(^a), windowslogs.csv(^b), appandservlogs.csv(^c) remain for analysis. The result PDF will be saved to the current path</td>
</tr>
<tr>
<td>-AuditPolicies</td>
<td>Checks only the audit policies. The result PDF will be saved to the current path</td>
</tr>
<tr>
<td>-ImportPath requires rsop.xml</td>
<td></td>
</tr>
<tr>
<td>-EventLogs</td>
<td>Checks only the event logs The result PDF will be saved to the current path</td>
</tr>
<tr>
<td>-ImportPath requires windowslogs.csv and appand-servlogs.csv</td>
<td></td>
</tr>
<tr>
<td>-ExportPath</td>
<td>The result PDF will be saved to this path</td>
</tr>
<tr>
<td>-CAPI2LogSize</td>
<td>Definition of the CAPI2 log size suitable for the environment. By default this value is set to 4MB as recommended from Microsoft [16]</td>
</tr>
</tbody>
</table>

\(^a\)XML-Export of Resultant Set of Policy [28]
\(^b\)Export of Windows logs "System" & "Security" from EventViewer, check example_windowslogs.csv
\(^c\)Export of Application and Service logs "TaskScheduler", "WindowsRemoteManagement" and "LocalSessionManager" from EventViewer, check example_appandservlogs.csv

GroupPolicy

Audit policies from a specific group policy are analysed.

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-GroupPolicyName</td>
<td>The name of the group policy to be analysed</td>
</tr>
</tbody>
</table>

AllGroupPolicies

All audit policies from every group policy in the current domain are analysed. The result PDF will be saved to the current path
6. Implementation

6.1.2 Approach

Users should not have to call the individual functions from the PowerShell modules. For this reason, the idea was to provide a main script which defines several modes to call with appropriate parameter. Each mode has a predefined procedure of function calls which will create a result PDF. In addition, the script should be delivered with integrated help functionality to supply a on-demand overview of all possible script modes and its parameter.

6.1.3 Implementation

To get a better understanding how each mode proceeds, this section describes the source code in form of activity diagrams. The activity diagrams are an overview and contain the core of each mode.

![Activity Diagram](image)

Figure 2.9: Online Mode

1. Get the audit policies from RSoP
2. Analyse the audit policies
3. Get the registry value of the audit setting "Audit: Force audit policy subcategory settings (Windows Vista or later) to override audit policy category settings" and check if it is enabled
4. Check if sysmon is installed and running
5. Check if CAPI2 is enabled and has a minimum log size of 4MB
6. Merge all returned hash tables from step 2-5 to one hash table
7. Write the "result_audit_policy.xml" for further processing to PDF
8. Get all events from "System" and "Security" event logs and write it uniquely to a temporary CSV
9. Get all events from "Application and Service" event log and write it uniquely to a temporary CSV
10. Compare the gathered events with the target lists of events (see "4.2 Mandatory Event Logs")
11. Create the result PDF
6. Implementation

Figure 2.10: Offline Mode

1. The offline mode without parameter will check the audit policies and event logs with the supplied export files:
 (a) Get the audit policies from the supplied rsop.xml
 (b) Analyse the audit policies
 (c) Write the "result_audit_policy.xml" for further processing to PDF
 (d) Compare the events form the supplied windowslogs.csv and appendservlogs.csv with the target lists of events
 (e) Create the result PDF

2. The offline mode with the parameter `-AuditPolicies` will check the audit policies with the supplied export file
 (a) Get the audit policies from the supplied rsop.xml
 (b) Analyse the audit policies
 (c) Write the "result_audit_policy.xml" for further processing to PDF
 (d) Create the result PDF

3. The offline mode with the parameter `-EventLogs` will check the event logs with the supplied files
 (a) Compare the events form the supplied windowslogs.csv and appendservlogs.csv with the target lists of events
 (b) Create the result PDF

4 All export files required must remain at the `-ImportPath`
6. Implementation

1. Get the audit policies from defined group policy which is stored in SYSVOL
2. Analyse the audit policies
3. Check if the audit setting "Audit: Force audit policy subcategory settings (Windows Vista or later) to override audit policy category settings" is enabled
4. Merge the returned hash tables from step 2 and 3 to one hashtable
5. Write the "result_audit_policy.xml" for further processing to PDF
6. Create the result PDF and store it in the current path

Figure 2.11: GroupPolicy Mode
6. Implementation

1. Get all audit policies from all group policies, which are stored in SYSVOL, and loop for each through the following procedure:

 (a) Analyse the audit policies
 (b) Check if the audit setting "Audit: Force audit policy subcategory settings (Windows Vista or later) to override audit policy category settings" is enabled
 (c) Merge the returned hashtables from step 2 and 3 to one hashtable
 (d) Write the "result_audit_policy.xml" for further processing to PDF
 (e) Create the result PDF and store it in the current path
 (f) Rename the created PDF- and XML-Files to its group policy name (e.g. results_TestPolicy.pdf and result_audit_policies_TestPolicy.xml)
Readiness for Tailored Attacks and Lateral Movement Detection

6. Implementation

6.2 Module: GetAndAnalyseAuditPolicies

The basic idea was to implement the use case "UC01 - Read Resultant Set of Policies" separately from the use case "UC02 - Analyse Audit Policies". However, during the implementation it quickly became clear that these two use cases could be merged and did not have to be implemented separately. Therefore, both use cases were integrated into one script module. The following describes how the two use cases were implemented.

6.2.1 Result

The script follows the following schedule in the probably most often used - Online Mode:

- Reading and caching of the RSoP which includes the audit settings
- Get all values of the defined audit policies for further analysis
- Check if "Audit: Force audit policy subcategory settings (Windows Vista or later) to override audit policy category settings" is enabled in registry to prevent conflicts between security settings
- Check if Sysmon is installed and running as a service
- Check whether CAPI2 is enabled and its log size is appropriate (> 4MB)

Each result of the individual steps is collected in hash tables and merged together to be exported to an XML file. Finally, the environment and files that are no longer needed are deleted, so that only the result XML is available for further processing. A result could possibly look like the following listing:

Listing 2.5: Example Result Audit Policy Analysis

```xml
<?xml version="1.0" encoding="utf-8"?>
<AuditPolicies>
  <AuditNonSensitivePrivilegeUse>NotConfigured</AuditNonSensitivePrivilegeUse>
  <AuditOtherObjectAccessEvents>NotConfigured</AuditOtherObjectAccessEvents>
  <AuditUserAccountManagement>NotConfigured</AuditUserAccountManagement>
  <AuditKernelObject>NotConfigured</AuditKernelObject>
  <AuditSAM>NotConfigured</AuditSAM>
  <AuditKerberosAuthenticationService>NotConfigured</AuditKerberosAuthenticationService>
  <AuditHandleManipulation>NotConfigured</AuditHandleManipulation>
  <ForceAuditPolicySubcategory>Enabled</ForceAuditPolicySubcategory>
  <Sysmon>InstalledAndRunning</Sysmon>
  <CAPI2LogSize>4194304</CAPI2LogSize>
  <CAPI2>EnabledGoodLogSize</CAPI2>
</AuditPolicies>
```

6.2.2 Approach

Read Resultant Set of Policies

Research was carried out to read the corresponding audit policy configurations from the system. At the beginning, the approach was to read the required configurations using the command `auditpol`. [30] This command can be used to read out and manipulate the currently valid information on the audit policies. However, the manipulation of the audit policies is not necessary within the tool and can be ignored. The command provides exactly the information needed to fulfill this use case.
6. Implementation

Listing 2.6: auditpol

| PS C:\Windows\system32> auditpol /get /category:Logon/Logoff |
|---|---|
| System audit policy | Category/Subcategory Setting |
| Logon/Logoff | Logon Success and Failure |
| | Logoff Success and Failure |
| | Account Lockout No Auditing |
| | IPsec Main Mode No Auditing |
| | IPsec Quick Mode No Auditing |
| | IPsec Extended Mode No Auditing |
| | Special Logon Success and Failure |
| | Other Logon/Logoff Events No Auditing |
| | Network Policy Server No Auditing |
| | User / Device Claims No Auditing |
| | Group Membership No Auditing |

Unfortunately, this output is not very ideal for a suitable further processing and analysis of the current configuration. The return value of the command is an ordinary array filled with corresponding strings and, therefore, the complete array should have been checked for correct content by string comparisons. Furthermore, the command `auditpol` does not offer the possibility of remote configuration with regard to an extension of the tool to a whole fleet of computers. For this reason, the idea of building the tool on the basis of this command was rejected.

Further research has shown that Microsoft provides a RSoP [28] for reading audit policies. This can also be accessed via a PowerShell command. Microsoft offers the command `Get-GPResultantSetOfPolicy` [31] for this purpose. This command can be used to generate an XML-based report of the currently valid GPOs. Since traversing an XML-based file via PowerShell proves to be very simple, this variant is preferable to the `auditpol` command. After a short test, it quickly became clear that the generated XML provides all necessary information for the further analysis. Unfortunately, the `Get-GPResultantSetOfPolicy` command is not available by default on all systems. However, this command is used and the missing Module: "GroupPolicy", which is used to activate the command, will be prerequisite for the script. [32] [33]

Analyse Audit Policies

The current configuration of the system’s audit policies is then to be evaluated from the temporarily cached file. The basis for this provides section "4.3 Correlation: Advanced Audit Policy Setting and Event Log IDs" based on "3.12 JPCERT/CC - Detecting Lateral Movement through Tracking Event Logs".
6. Implementation

6.2.3 Implementation

This section describes the implementation of the module GetAndAnalyseAuditPolicies.psm1 in detail. For this purpose, the following is referred to in section "6.2.1 Result" described schedule. This section is focusing on the -Online mode but will also cover the other functions which are implemented for a domain based system check.

To read the RSoP from the local/current system the command Get-GPResultantSetOfPolicy is used. The XML that is retrieved is then temporarily cached in the execution path of the script and read in again for further processing. The temporarily cached XML will then be removed.

```
try {
    Get-GPResultantSetOfPolicy -ReportType Xml -Path $PathRSoPXML | Out-Null
} catch {
    Write-Host "Necessary Module: ‘‘GroupPolicy’’ is not provided within this system" -ForegroundColor Red
    return
}
if ([System.IO.File]::Exists($PathRSoPXML)) {
    [xml]$RSoPResult = Get-Content $PathRSoPXML
}
```

The generated XML (RSoP) is an extraction of the GPO’s and contains only the configurations set from them. Afterwards the analysis begins and the entries are searched in the XML file, in which the required configurations for the "Advanced Audit Policies" are stored (see figure 2.13).

![Figure 2.13: GPO - Advanced Audit Policies](image)

The function CompareToTargetList searches for missing audit settings. It iterates over the queried AuditSettings and searches for missing configurations. Any missing setting will be written in a hashtable result with the value NotConfigured for further processing.

```
Function CompareToTargetList ([Hashable] $AuditSettings, [Array] $TargetAuditSettings) {
    $Result = @{}
    foreach ($TargetAuditSetting in $TargetAuditSettings) {
        if ($AuditSettings.keys -notcontains $TargetAuditSetting) {
            $Result.Add(($TargetAuditSetting -replace (" ")), "NotConfigured")
        }
    }
    return $Result
}
```

Listing 2.7: Get-GPResultantSetOfPolicy

Listing 2.8: CompareToTargetList: Search missing configurations
After checking for missing configurations, all values of the audit settings are gathered for further processing.

Listing 2.9: GetAuditSettingValues: Get configured audit settings from RSoP

```powershell
foreach ($AuditSetting in $AuditSettings.GetEnumerator()) {
    if ($TargetAuditSettings -notcontains $AuditSetting.Name) {
        continue
    }
    if ($AuditSetting.Value -and $AuditSetting.Name) {
        try {
            $AuditSettingValue = $AuditSetting.Value
        }
        catch {
            $AuditSettingValue = 0
        }
    }
    $AuditSubcategoryName = $AuditSetting.Name
    switch ($AuditSettingValue) {
        NoAuditing {
            $AuditSettingValueString = "NoAuditing"
            continue
        }
        Success {
            $AuditSettingValueString = "Success"
            continue
        }
        Failure {
            $AuditSettingValueString = "Failure"
            continue
        }
        SuccessAndFailure {
            $AuditSettingValueString = "SuccessAndFailure"
            continue
        }
        Default { continue }
    }
    $Result.Add(($AuditSubcategoryName -replace (" ")), $AuditSettingValueString)
}
```

After gathering of the values, the next step is to verify if the setting "Audit: Force audit policy subcategory settings (Windows Vista or later) to override audit policy category settings" is enabled as considered in section "4.6.4 AuditPolicy". This had to be solved via the registry, because this information is not available in the RSoP.

Listing 2.10: GetRegistryValue

```powershell
Function GetRegistryValue([String] $Path, [String] $Name) {
    return Get-ItemProperty -Path $Path -Name $Name -ErrorAction Stop
}
```

The registry entry is captured in a separate function to provide the possibility for tests. This function is called with the following parameter [34] to get the searched registry entry:

```powershell
$Path = "HKLM:\System\CurrentControlSet\Control\Lsa"
$Name = "SCENoApplyLegacyAuditPolicy"
```
Listing 2.11: Function IsForceAuditPolicyEnabled

```powershell
Function IsForceAuditPolicyEnabled ([Object] $AuditPolicySubcategoryKey) {
    $result = @{}
    if ($auditPolicySubcategoryKey) {
        if ($auditPolicySubcategoryKey.SCENoApplyLegacyAuditPolicy -eq 1) {
            $result.Add("ForceAuditPolicySubcategory", "Enabled")
            return $result
        } else {
            $result.Add("ForceAuditPolicySubcategory", "Disabled")
            return $result
        }
    } else {
        $result.Add("ForceAuditPolicySubcategory", "NotDefined")
        return $result
    }
}
```

The next step is to check if Sysmon as a service is installed (also not contained in the RSoP) and, if so, is it running or not. Since a service can be renamed to hide it from the bad guys, the Get-Service command cannot make a 100% statement about whether the service is actually installed. For this reason the description of the service is queried, which does not change while renaming. [12]

Listing 2.12: Function IsSysmonInstalled

```powershell
Function IsSysmonInstalled {
    $Service = Get-WmiObject win32_service -Filter "Description = 'System Monitor service'"
    $Result = @{}
    if ($Service) {
        if ($Service.State -ne "Running") {
            $Result.Add("Sysmon", "InstalledNotRunning")
            return $Result
        } else {
            $Result.Add("Sysmon", "InstalledAndRunning")
            return $Result
        }
    } else {
        $Result.Add("Sysmon", "NotInstalled")
        return $Result
    }
}
```
As a last step, the online mode is checking whether CAPI2 is enabled and has the right minimum log size of 4MB. The decision for 4MB is mentioned in the section "3.10 CryptoAPI 2.0". Unfortunately, this information is also not available via the RSoP. Therefore, the command `wevtutil` is used to query CAPI2 in the event log. The reason for this is that CAPI2 can only be enabled via the Event Viewer. [16] In order to enable testing here as well, a Get function for the event log entry has been created.

```
Function GetCAPI2 {
    return [xml](wevtutil gl Microsoft-Windows-CAPI2/Operational /f:xml)
}
```

The log size is stored in the Windows system as mebibyte (MiB). This is the reason for defining the initial log size to 4194304. The following conversion from 4 MB to mebibyte should make it clear:

\[
4 \text{ MB} = 4 \cdot 1024 \cdot 1024 \text{ Bytes} = 4194304 \text{ Bytes}
\]

```
Function IsCAPI2Enabled([xml] $capi2, [uint32] $requiredLogSize) {
    $capi2Enabled = $capi2.channel.enabled
    $currentLogSize = $capi2.channel.logging.maxsize -as [uint32]
    $result = @{
        if ($requiredLogSize -lt 4194304) {
            $requiredLogSize = 4194304
        }
        if ($capi2Enabled -eq "true" -and $currentLogSize -ge $requiredLogSize) {
            $result.Add("CAPI2", "EnabledGoodLogSize")
            $result.Add("CAPI2LogSize", "$currentLogSize")
        } elseif ($capi2Enabled -eq "true" -and $currentLogSize -lt $requiredLogSize) {
            $result.Add("CAPI2", "EnabledBadLogSize")
            $result.Add("CAPI2LogSize", "$currentLogSize")
        } else {
            $result.Add("CAPI2", "Disabled")
        }
    }
    return $result
}
```

All temporary files are removed at the end of this script.
To fulfill UC08 - Get Domain Information (see section 5.1.8) two functions where created to gather the advanced audit settings from group policies. One for gathering information about a specific group policy (GetDomainAuditPolicy) and the other for all group policies (GetAllDomainAuditPolicies). To achieve this, the information is gathered from the System Volume (SYSVOL) where all group policies remain in an Active Directory network. The audit settings of each group policy, remaining in SYSVOL, are stored as a CSV. This CSV is imported and each setting is gathered for further analysis. Like within the online mode, after doing so the hashtable is returned and filled with the missing audit settings.

Listing 2.15: Function GetDomainAuditPolicy

```powershell
Function GetDomainAuditPolicy ([String] $PolicyName) {
    $PolicyCSV = CheckDomainAndPolicy $PolicyName
    if ([System.IO.File]::Exists($PolicyCSV)) {
        Write-Host "Get audit settings from group policy: " + "$PolicyName"
        $AuditSettings = @{}
        $Policy = Import-Csv $PolicyCSV -Encoding UTF8
        foreach ($Element in $Policy) {
            $AuditSettings.Add(($Element.Subcategory -replace (" ")), $Element."Setting Value")
        }
        return $AuditSettings
    } else {
        Write-Host "For this Group Policy exist no auditing definition"
        return
    }
}
```

To analyse all group policies the function GetDomainAuditPolicy is called for each group policy and a hashtable, with the name of the group policy as the key and the settings as the value, is filled and returned.

Listing 2.16: Function GetAllDomainAuditPolicies

```powershell
Function GetAllDomainAuditPolicies {
    try {
        $GPOs = Get-GPO -all | Select-Object DisplayName, Id
    }
    catch {
        Write-Host "Your system is not associated with an Active Directory domain or forest"
        return
    }
    $AuditSettingsPerPolicy = @{}
    $AuditSettings = @{}
    foreach ($GPO in $GPOs) {
        $AuditSettings = GetDomainAuditPolicy $GPO.DisplayName
        $AuditSettingsPerPolicy.Add($GPO.DisplayName, $AuditSettings)
    }
    return $AuditSettingsPerPolicy
}
```
In addition to capture all audit settings of the group policies, the setting "Audit: Force audit policy subcategory settings (Windows Vista or later) to override audit policy category settings" is captured as well. If this setting is enabled in the group policy, it will remain in GptTmpl.inf in SecEdit in the SYSVOL-path of each policy.

Listing 2.17: Function IsForceAuditPolicyDomainEnabled

```
Function IsForceAuditPolicyDomainEnabled ([String] $PolicyName) {
    $Domain = Get-WmiObject Win32_ComputerSystem -ComputerName "localhost"
               | Select-Object -ExpandProperty Domain

    $PolicyId = Get-GPO -Name $PolicyName | Select-Object -ExpandProperty id

    $SecEditPath = "\\$Domain\SYSVOL\$Domain\[...]\Windows NT\SecEdit\GptTmpl.inf"
    $ForceAuditPolicyEnabled = "MACHINE[...]\SCENoApplyLegacyAuditPolicy=4,1"
    $ForceAuditPolicyDisabled = "MACHINE[...]\SCENoApplyLegacyAuditPolicy=4,0"

    $AuditSettings = @{}

    if (Test-Path $SecEditPath) {
        $RegistryKeyValue = Get-Content $SecEditPath
        if ($RegistryKeyValue -contains $ForceAuditPolicyEnabled) {
            $AuditSettings.Add("ForceAuditPolicySubcategory", "Enabled")
        } elseif ($RegistryKeyValue -contains $ForceAuditPolicyDisabled) {
            $AuditSettings.Add("ForceAuditPolicySubcategory", "Disabled")
        } else {
            $AuditSettings.Add("ForceAuditPolicySubcategory", "NotDefined")
        }
        return $AuditSettings
    }
}```
6. Implementation

6.3 Module: GetAndCompareLogs

This section describes the implementation of the "UC03 - Find Event Logs" as well as "UC04 - Analyse Found Event Logs". Both use cases were fulfilled in the PowerShell script "GetAndCompareLogs". Here is a description how the use cases were implemented.

6.3.1 Result

The script "GetAndCompareLogs", where both use cases were implemented, runs as follows:

- Reading and caching the event logs "System" & "Security"
- Filter cached logs by EventID, group EventIDs that occur more than once. Found EventIDs are exported as "CSV"
- Checking and caching whether a list of EventIDs from "Application and Service" logs can be read out
- Export result set of found EventIDs as "CSV"
- Import list of found event IDs and compare it with the predefined checklist
- Result of the comparison is written into an "XML" file
- Import and compare found application and service logs with predefined checklist
- Result of the comparison is written into the same "XML" as before

The now no longer needed CSV files are deleted. The XML with the result set is now available for any further processing. A result could possibly look like the following listing:

Listing 2.18: Example Result Audit Policy Analysis

```xml
<?xml version="1.0"?>
<Logs>
 <EventLogsID>
 <6>present</6>
 <21>missing</21>
 <24>missing</24>
 <102>missing</102>
 <104>missing</104>
 <106>missing</106>
 <201>missing</201>
 <4624>present</4624>
 <4634>present</4634>
 <4648>present</4648>
 <4656>present</4656>
 ...
 </EventLogsID>
 <AppAndServID>
 <106>present</106>
 <200>present</200>
 <129>present</129>
 <201>present</201>
 <102>present</102>
 <6>missing</6>
 <169>missing</169>
 <21>present</21>
 <24>present</24>
 </AppAndServID>
</Logs>
```
6. Implementation

6.3.2 Approach

Get Event Logs

After research was done on how to read out the event logs "System" and "Security" the decision was made to use the PowerShell command `Get-EventLog` [29]. This command allows to read out the whole EventLog by the LogName or also to search after a specific EventID. The first approach was to search for each EventID individually. The EventIDs to search for were taken from the JPCERT/CC Appendix B in the "Detecting Lateral Movement through Tracking event logs" report. [1]. The script ran successfully, but the runtime was not practicable. It took over 5 minutes to search for all EventIDs in an EventLog of the size of about 37 000 logs, or in other words 300 Kilobyte (KB). The developers then started to calculate the worst case scenario, none of the searched EventIDs is found in the EventLog. There are \( n \) EventIDs in the checklist and \( m \) entries in the EventLogs, if no EventID is found, every entry is called \( m \) times. That results in \( O(n \cdot m) \). The developers decided to cache the event logs, reducing the runtime to \( O(m) \). The cached logs are then grouped into EventIDs and export into a "CSV" file.

To read out the "Application and Service" logs we can not use Get-EventLog. The first approach used the `Get-WinEvent` [35] command. The logic stayed the same, read out all events, group and export them into a 'CSV' file. Unfortunately the Get-WinEvent is very slow, it took over 10 minutes to read out just under 6000 logs. The developers found an other, much quicker command called `wevtutil` [36]. Unfortunately it is not quite simple to read out all logs, for that reason each EventID will be searched if it appeared. Unlike Get-EventLog, this is not a problem because the command is faster, the EventIDs are more likely to occur and the amount of logs is smaller. On the testing environment with a machine with 4 Gigabyte (GB) memory and an Intel Xeon E5 with 2 cores it took about 10 seconds to check for 9 EventIDs in 15 000 Log entries. If and EventID was found it was added to an ArrayList, after all IDs are checked the file is exported as a 'CSV'.

Analyse Found Event logs

To analyse the occurred EventIDs the two generated "CSV" files are imported into the PowerShell script. The respective checklists, which are based on the JPCERT/CC - Detecting Lateral Movement through Tracking Event Logs, are embedded in the script. Each id from the checklist is checked if it is present in the respective CSV file. Is this the case, the id is added to the XML-file and marked as present. Did the id no occur in the it will be added and marked as missing. The file looks like the example in "Result" shown.
6. Implementation

6.3.3 Implementation

This section describes the implementation of `GetAndCompareLogs` in detail. For this purpose, the following is referred to in the section "6.3.1 Result" described schedule.

The first step is to read out the "System" and "Security" logs. To achieve this goal the command `Get-EventLog` is used in the first part of the function `GetEventLogsAndExport`.

Listing 2.19: Function GetEventLogsAndExport Part 1

```powershell
$LogNames = @("System", "Security")
$EventLogs = New-Object System.Collections.ArrayList

Function GetEventLogsAndExport{
 foreach($Log in $LogNames)
 {
 $EventLogs += Get-EventLog -LogName $Log
 }
}
```

The second part of the function filters the EventIDs from the cached logs. Subsequently, multiple EventIDs are grouped together.

Listing 2.20: Function GetEventLogsAndExport Part 2

```powershell
$CurrentFolder = (Resolve-Path .).Path
$ExportEventLogsIntoCSV=$CurrentFolder + "\eventlogs.csv"

$EventLogs| Select EventID -Unique |Export-CSV $ExportEventLogsIntoCSV -NoTypeInfo -Encoding UTF8
```

After the export the function `GetApplicationAndServiceLogs` is called. As before, the function is divided into two parts, first how to get the data. The same procedure is used three times, for the "TaskScheduler", "WindowsRemoteManagement" and "LocalSessionManager". Due to the fact that the code is very similarly it is only shown once. To search for the EventIDs `wevtutil` is used.

Listing 2.21: Function GetApplicationAndServiceLogs Part 1

```powershell
$AppAndServLogs = New-Object System.Collections.ArrayList
$IdsForTaskScheduler = ("106", "200", "129", "201", ...)

$AppAndServLogs += "EventID"

Function GetApplicationAndServiceLogs{
 foreach($Id in $IdsForTaskScheduler){
 if (wevtutil qe Microsoft-Windows-TaskScheduler/Operational /q:"*[System[(EventID="$Id")]]" /uni:false /f:text){
 $AppAndServLogs += $Id
 }
 }
}
```
After all three logs were checked and all found EventIDs were added, the information is exported into a "CSV"-file.

Listing 2.22: Function GetApplicationAndServiceLogs Part 2

```powershell
$ExportApplicationAndServiceLogsIntoCSV = $CurrentFolder + "\applicationandservicelogs.csv"

$AppAndServLogs | Out-File -FilePath $ExportApplicationAndServiceLogsIntoCSV
```

The next point on the list is importing the found "EventLogs" and "Service And Application" logs. Due to the similarity of the code it is only shown once.

Listing 2.23: Function ImportCompareExport

```powershell
$EventLogIdsToCheck = (6, 21, 24, 102, 104, 106, 129, ...)

Create XML "result_event_logs.xml"

$ImportEventLogs = $ExportEventLogsIntoCSV
$MyEventLogs = Import-Csv $ImportEventLogs -Encoding UTF8

Function ImportCompareExport{
 foreach($Id in $EventLogIdsToCheck){
 if($MyEventLogs | where {$_.EventID -eq $Id}){
 # Write to XML with value "present"
 } else{
 # Write to XML with value "missing"
 }
 }

 # Close XML
}
```

The same happens with the "App and Service" logs in the GetApplicationAndServiceLogs function. All temporary files are removed at the end of this script.
6. Implementation

6.4 Module: Visualize

In this script the "UC05 - Display missing or wrong system configuration" is implemented here the description how it was done.

6.4.1 Result

The script "UC05 - Display missing or wrong system configuration" runs as follows:

- Create Portable Document Format (PDF) at given folder and "open" it
- Import audit policies and compare them to a given checklist, result is written and visualized in a table
- Check which attack tool categories can be detected with the current audit guidelines and which cannot
- Import the found EventLogs and check if the important EventIDs, according to JPCERT/CC, are found
- "Close" PDF-document

The resulting PDF looks something like this:

<table>
<thead>
<tr>
<th>Audit Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit Name</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>AuditNonSensitPrivilege</td>
</tr>
<tr>
<td>AuditProcessTermination</td>
</tr>
<tr>
<td>AuditSAM</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

With this policies it is possible to detect X out of 14 attack categories

The following attack categories cannot be detected with certainty:
- CommandExecution (AuditLogoff, AuditLogon, AuditRegistry)
  ...

Windows Logs

<table>
<thead>
<tr>
<th>EventID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EventID6</td>
<td>present</td>
</tr>
<tr>
<td>EventID104</td>
<td>missing</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

6.4.2 Approach

At first, the developers considered using "PowerBI" [4], like Jessica Payne uses it in "WEFFELS". But after a short trial they decided that the tool was too overpowered for their purpose. Also, they did not like that the user would have to install a third-party tool to analyse his data. The Dynamic Link
6. Implementation

Library (DLL) "iTextSharp", originally a C# library, allows to generate a PDF directly from the code, which can also be used in PowerShell. This variant is not very versatile and it is difficult to create an appealing design, but it is enough for now.

6.4.3 Implementation

This section describes the implementation of Display missing or wrong system configuration in detail. For this purpose, the following is referred to in section "6.4.1 Result" described schedule.

The iTextSharp.dll and the functions from PowerShell-PDF [37] were imported. The first step is to create a PDF-document and "open" it. For this purpose the function OpenPDF was created:

```
function OpenPDF{
 $Pdf = New-Object iTextSharp.text.Document
 New-PDF -Document $Pdf -File #export path
 $Pdf.Open()
}
```

The function WriteAuditPolicies then compares the found audit policies and display the ones who are incorrectly. It will call two other functions, CreateAddCellWithColor and CreateAddCell.

```
function WriteAuditPolicies{
 $AuditChecklist = @{$AuditLogon = @("Success", "Medium"; ...)}
 $IncorrectAudits = @() # will be returned for later use
 [xml] $AuditXml = Get-Content $auditPath
 $MyAudits = $AuditXml.AuditPolicies.ChildNodes
 foreach ($Audit in $MyAudits) {
 $LocalName = $Audit.LocalName
 CreateAddCell $LocalName # Display auditname into cell
 $CheckAudit = $AuditChecklist[$LocalName]
 $CheckAuditValue = $CheckAudit[0] # Correct setting
 $CheckAuditPrio = $CheckAudit[1] # Priority of audit
 if ($Audit.InnerXml -eq $CheckAuditValue) { # Checks if audit values are equal
 CreateAddCellWithColor $Audit.InnerXml 0 255 0
 # Displays actual audit value into cell, color green
 }
 elseif ($Audit.InnerXml.startswith("Succ") #checks if audit is 'overpowered'
 -and $CheckAuditValue -eq "Success") {
 CreateAddCellWithColor $Audit.InnerXml 0 106 0
 # Displays actual audit value into cell, color darkgreen
 }
 else { # audit is wrong
 CreateAddCellWithColor $Audit.InnerXml 255 0 0
 # Displays actual audit value into cell, color red
 $IncorrectAudits += $Audit.LocalName
 }
 CreateAddCellWithColor $CheckAuditPrio # Displays audit priority into cell
 }
 return $IncorrectAudits
}
```
6. Implementation

function CreateAddCellWithColor($Content, $R, $G, $B) {
    # Create iTextSharp.text.Paragraph and add content
    # Create iTextSharp.text.pdf.PdfPCell with paragraph and set backgroundcolor $R $G $B
    # Add Cell to Table
}

function CreateAddCell($Content) {
    # Create iTextSharp.text.Paragraph and add content
    # Create iTextSharp.text.pdf.PdfPCell with paragraph
    # Add Cell to Table
}

Now that the "Import audit policies and compare them to a given checklist, result is written and visualized in a table" is done, it is possible to check which attack tool categories can be detected with the current audit settings. For that purpose, the function ToolsCanBeDetected was created. This function relies on the return of the $IncorrectAudits.

Listing 2.26: Function ToolsCanBeDetected

function ToolsCanBeDetected($IncorrectAudits) {
    [xml] $AuditsByCategorie = Get-Content "$PSScriptRoot\AuditByCategorie.xml"
    $NotDetectableCategories = @()
    $CausingAudit = @()

    $Categories = $AuditsByCategorie.Category.ChildNodes
    foreach ($Category in $Categories) {
        [int]$Checknr = 0
        foreach ($IncorrectAudit in $IncorrectAudits) {
            if ($Category.ChildNodes.InnerXml -contains $IncorrectAudit) {
                $Checknr += 1
                $CausingAudit += $IncorrectAudit
            }
        }
        if ($Checknr -gt 0) {
            $NotDetectableCategories += $Category.LocalName + "(" + $CausingAudit + ")"
        }
    }
    # Output of the not detectable categories and the causing audits
}

The next step is to display the found EventLogs and if they are missing or present. Therefore two tables, one for the WindowsLogs and one for the Application And Service logs, are created. Because these two tables are created the same way, only one case is shown. Hence, the function WriteEventLogs was created.

Listing 2.27: Function ToolsCanBeDetected

function WriteEventLogs {
    [xml] $Eventxml = Get-Content # importPath
    # Add Title
    $EventsWindows = $Eventxml.Logs.EventLogsID.ChildNodes
    $Result = @()
    foreach ($Event in $EventsWindows) {
        $Result += $Event.LocalName
        $Result += $Event.InnerXml
    }
    #Add result to table
}
As a final task, all these function have to be called in the right order, and the opened PDF has to be closed. For this case, the simple function `VisualizeAll` was created:

Listing 2.28: Function VisualizeAll

```plaintext
function VisualizeAll {
 $Pdf = OpenPDF $ExportFolder
 $IncorrectAudits = WriteAuditPolicies $ExportFolder
 ToolCanBeDetected $IncorrectAudits
 WriteEventLogs $ExportFolder
 $Pdf.Close()
}
```
7 Conclusion and Outlook

This section deals with the overall conclusion about the achieved work and delivered product as well as the used technologies and frameworks. Moreover, it will provide an outlook for further development and expansion in this area on the basis of this work.

7.1 Conclusion Achieved Work

All requirements set at the beginning of the thesis, use cases and non-functional requirements, were completely fulfilled. The developed tool is unique in its form and allows the user to make a statement about the readiness to detect APTs and lateral movements. The functionality is limited to the correctness of the set audit policies and gives an overview of the existing and missing event logs based on the study "JPCERT/CC - Detecting Lateral Movement through Tracking Event Logs".

7.2 Conclusion Technologies and Frameworks

The chosen technology PowerShell offered a simple implementation of the problem. However, an object-oriented approach and the realization of a classic software project is not ideal with PowerShell. It is noticeable that the language was originally a scripting language.

Additionally, the test framework used, Pester, does not offer the desired level of functionality. Although there is the possibility to mock functions, it is not implemented in such a way that system internal functions can be mocked with it. Due to the fact that the SRI tool has strong dependencies on system internal functions, it was difficult to write suitable tests for the implemented functions. For this reason, many system tests were performed manually as system tests to test the correct flow of the tool.

With the PSCodeHealth framework, the code developed could be checked for best practices and code smells. This was extremely helpful as there was little experience with PowerShell at the beginning of the thesis.

Furthermore, it was very easy and practical to have a test environment with the Microsoft Azure Cloud that could be used efficiently. It also allowed to change the test environment flexibly and without much effort.
7.3 Outlook

Even if all requirements were fulfilled, further wishes and requirements for a tool to recognise the readiness of a system arose during this thesis.

**Fleet Check** The review of a fleet was covered only minimally, limited to exactly one domain. Therefore the extension to a complete fleet, which is divided into forests, domains and organisation units, would be quite desirable in this area.

**Presentation** The representation as PDF is absolutely practicable, could however still take place in other forms. For example, it would be possible to provide a GUI for the user instead of a PDF. The GUI could represent the complete fleet as a kind of tree, whereby one can navigate interactively through the tree and thus evaluate the readiness of individual parts.

**Technology** However, the chosen technology PowerShell, as described in the conclusion, is not very suitable to realise such a representation. In order to stay close to the operating system, the .NET technology C# would be suitable. This raises the question whether it would be possible to port the existing code easily and quickly to C#.

**GPO templates** An evaluation of the system is a good start, but it would be a great benefit if a template for the group policies could be created at the same time. This would ensure that IT administrators with little knowledge of Active Directory environments would only have to import a template. Ideally, such a template would be based on the existing group policy. Thus, no differences would have to be derived from the current group policy and the recommendation from the SRI, but the current group policy could simply be overwritten.

**Sysmon on the fleet** As mentioned in the analysis (see ”3.7 Sysmon”), Sysmon offers a clear advantage over Microsoft’s integrated event logging. It would therefore be interesting to develop a process that would allow a simple rollout of Sysmon to an entire fleet.

**Central event logging** Central event logging is of great advantage in a larger environment, as shown by the analysis of WEFFLES (see ”3.2 Windows Event Logging Forensic Logging Enhancement Services”). By logging events centrally, there is no “unnecessary” accumulation of data on the individual clients and the dependency on the individual clients is eliminated in the case of a security threat. It would also be interesting to be able to make statements about the performance and storage requirements of central logging in this context.
## Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>APT</strong></td>
<td>Advanced Persistent Threat, a stealthy computer network attack in which the attacker gains unauthorized access to a network and remains undetected for an extended period.</td>
</tr>
<tr>
<td><strong>CAPI2</strong></td>
<td>CryptoAPI2, a Microsoft Windows platform specific Cryptographic Application Programming Interface from Windows Vista or newer, offers function for encrypting and decrypting data and strong authentication with digital certificates and secure generation of random numbers.</td>
</tr>
<tr>
<td><strong>CI</strong></td>
<td>Continuous Integration, continuous assembly of components into an application, mostly on a server with automatic builds and tests.</td>
</tr>
<tr>
<td><strong>CSV</strong></td>
<td>Comma-separated values, a delimited text file that uses a comma to separate values.</td>
</tr>
<tr>
<td><strong>DLL</strong></td>
<td>Dynamic Link Library, is Microsoft’s implementation of the shared library concept in the Microsoft Windows.</td>
</tr>
<tr>
<td><strong>DNS</strong></td>
<td>Domain Name System, name resolution on the internet, DNS is a directory service responsible for converting alphanumeric domain names into numeric IP addresses.</td>
</tr>
<tr>
<td><strong>EXE</strong></td>
<td>Executable File for different operating systems.</td>
</tr>
<tr>
<td><strong>FAQ</strong></td>
<td>Frequently Asked Questions, listed questions and answers, all supposed to be commonly asked in some context, and pertaining to a particular topic.</td>
</tr>
<tr>
<td><strong>GB</strong></td>
<td>Gigabyte, is a unit of measurement for digital technology and computer science, 1 GB is $10^9$ Byte.</td>
</tr>
<tr>
<td><strong>GPO</strong></td>
<td>Group Policy Objects, is a digital policy for various settings under Microsoft Windows 2000 and its successors.</td>
</tr>
<tr>
<td><strong>GUI</strong></td>
<td>Graphic User Interface, a form of user interface of a computer, make application software operable for humans on a computer by means of graphic symbols and control elements.</td>
</tr>
<tr>
<td><strong>ICMP</strong></td>
<td>Internet Control Message Protocol, is used in computer networks to exchange information and error messages via the internet protocol.</td>
</tr>
<tr>
<td><strong>ID</strong></td>
<td>Identifier, is a characteristic linked to a particular identity for the unique identification of the load-bearing object.</td>
</tr>
</tbody>
</table>
Glossary

IDE
Integrated development environment, is a software application that provides comprehensive facilities to computer programmers for software development.

IP
Internet-Protocol, widely used network protocol, represents the basis of the internet.

JPCERT/CC
Japan Computer Emergency Response Team Coordination Center, a Computer Security Incident Response Team established in Japan.

KB
Kilobyte, is a unit of measurement for digital technology and computer science, 1 KB is $10^3$ Byte.

LaTeX
Lamport TeX, is a software package that simplifies the use of the TeX typesetting system with the help of macros.

LGPO
Local Group Policy Object, is a Local GPO.

LGPO.exe
Local Group Policy Object Utility, a command-line utility to automate the management of local group policy.

MB
Megabyte, is a unit of measurement for digital technology and computer science, 1 MB is $10^6$ Byte.

MiB
Mebibyte is a power of two, appropriate for binary machines. Many operating systems calculate the file size in mebibyte, but specify the number as MB (megabyte).

MITRE ATT&CK
MITRE Adversarial Tactics, Techniques, and Common Knowledge, a globally-accessible knowledge base of adversary tactics and techniques based on real-world observations by MITRE, a non-profit organisation which manages federally funded research and development centers supporting several U.S. government agencies.

MPSSVC
Is part of Windows Firewall, which protects computers by preventing unauthorized users from gaining access through the Internet or a network.

PKI
Public Key Infrastructure, a system capable of issuing, distributing and verifying digital certificates.

PoC
Proof of concept is a milestone at which the basic feasibility of a project is proven.

PowerBI
Is a business analytics service delivered by Microsoft with self-service business intelligence capabilities.

PowerShell ISE
PowerShell Integrated Scripting Environment, a Windows-based graphic user interface for PowerShell development.

RDP
Remote Desktop Protocol, is a Microsoft network protocol for remote access to Windows computers.

RSoP
Resultant Set of Policies, is an overview of all group policy settings within the Active Directory structure.
SAM  Security Accounts Manager, is a Microsoft Windows service that stores user information such as logon name and password as hash values in a database

SCT  Microsoft Security Compliance Toolkit, this set of tools allows enterprise security administrators analyze, test, edit and store Microsoft-recommended security configuration baselines for Windows and other Microsoft products, while comparing them against other security configurations

SYSVOL  System Volume, a shared directory that stores the server copy of the domain’s public files that must be shared for common access and replication throughout a domain

TGT  Ticket Granting Ticket, is a small file that, similar to a password, but more secure, allows access to a data exchange

UC  Use Case, the externally visible behavior of a system is described from the user’s point of view

VPN  Virtual Private Network, a private network that enables users to send and receive data securely and encrypted over public or shared networks

WEFFLES  Windows Event Logging Forensic Logging Enhancement Services, a Threat Hunting/Incident Response Console with Windows Event Forwarding and visualized with PowerBI

wvtutil  Windows Event Log Tools Utility, enables to get information about event logs and publishers

WFP  Windows Filtering Platform, set of API and system services that provide a platform for creating network filtering applications

XML  Extensible Markup Language, a markup language for the representation of hierarchically structured data in the format of a text file, which is readable both by humans and by machines
Listings

2.1 LogonTracer: given docker run command .......................................................... 9
2.2 LogonTracer: docker ps (PORTS) ........................................................................ 9
2.3 LogonTracer: recommended docker run command ............................................. 9
2.4 SRI Main Script Parameter Combinations ......................................................... 33
2.5 Example Result Audit Policy Analysis ................................................................. 39
2.6 auditpol .................................................................................................................. 40
2.7 Get-GPResultantSetOfPolicy .............................................................................. 41
2.8 CompareToTargetList: Search missing configurations .................................. 41
2.9 GetAuditSettingValues: Get configured audit settings from RSoP .............. 42
2.10 GetRegistryValue ............................................................................................... 42
2.11 Function IsForceAuditPolicyEnabled ................................................................. 43
2.12 Function IsSysmonInstalled ............................................................................... 43
2.13 Function GetCAPI2 ............................................................................................ 44
2.14 Function IsCAPI2Enabled ................................................................................... 44
2.15 Function GetDomainAuditPolicy ....................................................................... 45
2.16 Function GetAllDomainAuditPolicies ............................................................... 45
2.17 Function IsForceAuditPolicyDomainEnabled .................................................. 46
2.18 Example Result Audit Policy Analysis .............................................................. 47
2.19 Function GetEventLogsAndExport Part 1 ........................................................ 49
2.20 Function GetEventLogsAndExport Part 2 ........................................................ 49
2.21 Function GetApplicationAndServiceLogs Part 1 ............................................ 49
2.22 Function GetApplicationAndServiceLogs Part 2 ............................................ 50
2.23 Function ImportCompareExport ....................................................................... 50
2.24 Function OpenPDF ............................................................................................. 52
2.25 Functions WriteAuditPolicies & CreateAddCellWithColor & CreateAddCell . 52
2.26 Function ToolsCanBeDetected ............................................................................. 53
2.27 Function ToolsCanBeDetected ............................................................................. 53
2.28 Function VisualizeAll ........................................................................................ 54
# List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Test Environment</td>
<td>2</td>
</tr>
<tr>
<td>2.2</td>
<td>SCT: Policy Viewer</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>LogonTracer: Sample Graph from Test Environment</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>LogonTracer: Confusing Graph from Test Environment</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>Detectable attacks with sysmon-modular</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Advanced Audit Policy - Logon/Logoff - Audit Special Logon</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Domain Model</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>Sequence Diagram SystemReadinessInspector - SRI</td>
<td>31</td>
</tr>
<tr>
<td>2.9</td>
<td>Online Mode</td>
<td>35</td>
</tr>
<tr>
<td>2.10</td>
<td>Offline Mode</td>
<td>36</td>
</tr>
<tr>
<td>2.11</td>
<td>GroupPolicy Mode</td>
<td>37</td>
</tr>
<tr>
<td>2.12</td>
<td>AllGroupPolicies Mode</td>
<td>38</td>
</tr>
<tr>
<td>2.13</td>
<td>GPO - Advanced Audit Policies</td>
<td>41</td>
</tr>
<tr>
<td>B.1</td>
<td>Test Overview</td>
<td>XX</td>
</tr>
<tr>
<td>B.2</td>
<td>Test Scores</td>
<td>XX</td>
</tr>
<tr>
<td>B.3</td>
<td>Maintainability Scores</td>
<td>XXI</td>
</tr>
<tr>
<td>G.1</td>
<td>Open PowerShell as Administrator</td>
<td>IV</td>
</tr>
<tr>
<td>G.2</td>
<td>Navigate to SRI</td>
<td>IV</td>
</tr>
<tr>
<td>G.3</td>
<td>PowerShell Bypass</td>
<td>V</td>
</tr>
<tr>
<td>G.4</td>
<td>PowerShell Bypass</td>
<td>V</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Test Environment User ........................................... 3
2.2 Mandatory System Event Logs .................................. 15
2.3 Mandatory TaskScheduler Event Logs .......................... 15
2.4 Mandatory Windows Remote Management Event Logs ............ 15
2.5 Mandatory TerminalServices-LocalSessionManager Event Logs 16
2.6 Mandatory Sysmon Event Logs .................................. 16
2.7 Mandatory TaskScheduler Event Logs .......................... 16
2.8 Mandatory Windows Remote Management Event Logs ............ 16
2.9 Mandatory Windows Local Session Manager Event Logs ......... 16
2.10 Mandatory Security Event Logs ................................. 17
2.11 Advanced Audit Policy Setting Account Logon ................. 18
2.12 Advanced Audit Policy Setting Account Management .......... 18
2.13 Advanced Audit Policy Setting Logon/Logoff .................. 18
2.14 Advanced Audit Policy Setting Logon/Logoff ................. 19
2.15 Advanced Audit Policy Setting Object Access ................ 19
2.16 Advanced Audit Policy Setting Policy Change ................. 19
2.17 Advanced Audit Policy Setting Privilege Use ................ 19
2.18 Attack Categories [1] ............................................. 21
2.19 Audit Policy Priority [20] ........................................ 23
2.20 Non Functional Requirements ................................. 29
Bibliography


Bibliography

Introduction to JPCERT / CC. June 2016.


Bibliography


Part II
Appendix
Task Definition

Einführung

Es werden vermehrt Cyberangriffe publik, wo Schadcode im Einsatz ist, welcher sich nicht nur auf einem infizierten System niederlässt, sondern weitere Systeme im Netz befällt. Das Ziel oder Resultat ist dabei oft die komplette Infiltrierung einer Organisation. In der Analyse solcher Fälle sind Information und Zeit ein Schlüssel zum Erfolg. Folglich ist die Bereitschaft "Readiness" für ein solches Ereignis ein entscheidender Faktor.

Aufgabe


Abgrenzung

Es geht nicht darum neue Angriffsvektoren zu finden.

Tätigkeiten

• Projektmanagement und Dokumentation
• Einarbeitung in Incident Handling und Forensik
• Einarbeitung in Angriffstechniken und Werkzeuge
• Einarbeitung in Abwehrtechniken und Härting von Systemen
• Studium öffentlicher Quellen und verfügbaren Tools
• Umsetzung eines Analyzers gemäss Anforderungen basierend auf etablierten Frameworks
Vorgehen

Im Rahmen der allgemeinen Richtlinien zur Durchführung von Studien- und Bachelorarbeiten gemäß eigenem Projektmanagementplan. Dieser Projektmanagementplan ist als Erstes zu erstellen und enthält insbesondere:

- Die Beschreibung des dem Projektcharakter angepassten Vorgehensmodells.
- Eine erste Aufteilung der Aufgabe in gemeinsam und einzeln zu bearbeitende Teile unter Berücksichtigung der vorgegebenen Teilaspekte. Die genaue Aufteilung muss spätestens nach der Technologiestudie (Elaboration) erfolgen.
- Den Projektplan (Zeitplan) und die Meilensteine.

Anforderungen

Es geht primär darum einen Analyzer zu erstellen um die "Readiness for Tailored Attacks and Lateral Movement Detection" beurteilen zu können. Idealerweise kann dieses Tool von einem IT Administrator ohne spezielle Kenntnisse und grossartige Installationsprozeder ausgeführt werden.

Schematisch aber nicht bindend werden folgende Schritte auszuführen sein

- Definition der Requirements für einen neuen/verbesserten Analyzer
- Design und Analyse basierend auf den Vorgaben
- Vorschläge für die Umsetzung oder Verbesserung eines
  - Readiness Analyzers
  - Readiness Optimizers
  - Compromise Analyzers
- Implementation der Funktionalität und Erstellung eines Benutzerhandbuch
- Erweiterung der Analyzer um neue Erkenntnisse, Werkzeuge und Indicators
- Dokumentation der Software und Skripte

Technologien

- Windows Event Logs, Security und Audit Logs
- Windows On-Board Tools, Sysinternals Toolkit
- Active Directory Service (AD) Services
- Group Policy Objects (GPO)
- PowerShell, .NET, Python, Windows Batch

XVII
Infrastruktur

Die Arbeiten werden auf den Rechnern der Studenten durchgeführt. Zusätzlich benötigte Software oder Hardware wird bei Bedarf und nach Rücksprache mit Compass Security zur Verfügung gestellt.

Erwartete Resultate

In elektronischer Form

- lauffähiges Toolkit und kompletter Source Code
- komplette Software Dokumentation (Use Cases, Klassenmodell, Sequenzdiagramme usw. in UML)
- komplette Use Cases und Erfolgs-Szenarien resp. Musterlösungen
- alle Dokumente und Protokolle (vorzugsweise in englischer Sprache)

Auf Papier

Gemäss der Anleitung der HSR: \hsr.ch\root\alg\skripte\Informatik\Fachbereich\Studienarbeit_Informatik

Es muss aus den abgegebenen Dokumenten klar hervorgehen, wer für welchen Teil der Arbeit und der Dokumentation verantwortlich war (detaillierte Zeiterfassung).

Termine

Termine gemäss der HSR: \\hsr.ch\root\alg\skripte\Informatik\Fachbereich\Studienarbeit_Informatik \SAI\Termine

<table>
<thead>
<tr>
<th>Datum</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.09.2018</td>
<td>Beginn der Arbeit, Ausgabe der Aufgabenstellung durch den Betreuer.</td>
</tr>
<tr>
<td>21.12.2018</td>
<td>Der Betreuer/Examinator gibt das Dokument mit dem korrekten und vollständigen Abstract der Broschüre zur Weiterverarbeitung an das Studiengangsekretariat frei. Hochladen aller verlangten Dokumente auf archiv-i.hsr.ch Abgabe des Berichts an den Betreuer bis 12.00 Uhr</td>
</tr>
</tbody>
</table>
Zeitplan und Meilensteine


Betreuung

Die Arbeiten werden durch Cyrill Brunschwiler betreut. Der Gegenleser ist noch nicht bestimmt.

Kontakt

Cyrill Brunschwiler, Managing Director, Compass Security Schweiz AG
Weststrasse 50, 8003 Zürich, Switzerland
Werkstrasse 20, 8645 Jona, Switzerland

+41 55 214 41 73
cyrill.brunschwiler@compass-security.com
cyrill.brunschwiler@hsr.ch

Unterschriften

Jona, 28. September 2018

Cyrill Brunschwiler  Claudio Mattes  Lukas Kellenberger
Code Metrics

Test Overview

This overview shows that all tests have been passed and that the duration of the tests is quite short so that the tests can be ran regularly.

![Test Overview](image1)

Test Scores

As predicted at the beginning of the implementation there will not be a 100% test coverage because several functions depend on system internal functions and outputs. Although, we could reach almost 50% test coverage within 71 tests.

![Test Scores](image2)
Maintainability

The maintainability of the code is quite good, because the average functional length of code is well readable with almost 15 lines. The highest nesting depth is not quite as good, although PSCode-Health marks it as ok. This nesting depth occurs in the functions GetAuditSettingValues and ToolCanBeDetected, but could not be solved otherwise.

![Code Health Report - modules](image)

Figure B.3: Maintainability Scores
Developer Manual

System Readiness Inspector

Authors:

Claudio Mattes
claudio.mattes@hsr.ch

Lukas Kellenberger
lukas.kellenberger@hsr.ch

Department Computer Sciences
HSR University of Applied Sciences Rapperswil
CH-8640 Rapperswil, Switzerland

December 18, 2018
General Information

1.1 System Overview

The "System Readiness Inspector" is a Windows PowerShell tool that helps you to check the readiness of a system to detect advanced persistent threats and lateral movement. After the SRI ran successfully it generates a PDF-Document showing wrong or missing configurations. The SRI was developed during a student research project by the two bachelor of science in computer science students, Claudio Mattes and Lukas Kellenberger.

The SRI has four different modes: Online, Offline, GroupPolicy, AllGroupPolicies. The online mode is limited to the current system and thus determines readiness. The offline mode is used to be able to make a statement about any system by means of exports. The GroupPolicy mode is limited to a specific Group Policy, which is checked for its audit settings. In the AllGroupPolicies mode, all group policies of the current domain are examined.

1.2 Organization of the Manual

The developer manual contains the following parts:

- **General Information:**
  The General Information section explains the tool and the purpose for which it is intended.

- **System Requirements:**
  The System Requirements sections describes the requirements for a developer environment to getting started with coding.

- **Continuous Integration:**
  This sections provides hints for a accurate continuous integration environment built with Microsoft Azure DevOps.

- **Test Framework:**
  Within this section some key findings with the test framework Pester are provided.
System Requirements

This section is about how to get started with coding for the "System Readiness Inspector" (SRI). The focus in this section is about the used software and extensions to provide an environment to develop. But basically, there is no restriction how to handle your environment to get started.

2.1 Operating System

To develop the SRI the operating system "Microsoft Windows 10 Professional - Version 1803" was used.

2.2 Windows PowerShell 5.0

The used language in this project is Windows PowerShell. Be sure that you have installed the "Windows Management Framework 5.1". Check your version with the following command:

```bash
$PSVersionTable.PSVersion
```

Windows Management Framework 5.1:

2.3 Integrated Development Environment (IDE)

During this study thesis "Microsoft Visual Studio Code - Version 1.29.1" served as the IDE to develop in Windows PowerShell. Microsoft’s integrated IDE for Windows PowerShell "Integrated Script Environment (ISE)" was refused to use because the Microsoft Visual Studio Code IDE provides a very large set on extensions useful for any kind of developing. In addition, the integrated "Source Control" tab makes it extremely easy to maintain strict version control.

Microsoft Visual Studio Code:
https://code.visualstudio.com/

2.4 Microsoft Visual Studio Code Extensions

To develop efficiently in Windows PowerShell with "Microsoft Visual Studio Code" the following extensions are used during the development:

- PowerShell (extension identifier: ms-vscodetools.powershell)
- Code Spell Checker (extension identifier: streetsidesoftware.code-spell-checker)
Continuous Integration

To provide a continuous integration environment for this project Microsoft Azure DevOps was used.

3.1 Microsoft Azure DevOps

To use the "Microsoft Azure DevOps" a Microsoft account is required:

Microsoft Registration:
https://account.microsoft.com/account?lang=en-us

After the registration sign in "Microsoft Azure DevOps":

Microsoft Azure DevOps Sign-In:
https://dev.azure.com/

Use the following link to get started with "Microsoft Azure DevOps":

Getting Started with Microsoft Azure DevOps:

3.1.1 Configuration

There are some configurations to make for a minimal continuous integration with "Microsoft Azure DevOps". On the left hand side click on "Pipelines - Builds" and click on "New Pipeline":

![New Pipeline](image)
Select your location of the source code. In this project GitHub was used:

After that, select your repository to use in your source code location:

Modify the YAML in the next step as provided after the printscreen and your continuous integration is ready to go:
This YAML-File is adjusted for the use of the Pester test framework within the project. For more information use the following link, which provides additional information if needed: https://www.powershellmagazine.com/2018/09/20/converting-a-powershell-project-to-use-azure-devops-pipelines/
Test Framework

4.1 Pester

Pester is a framework to provide a test environment for PowerShell projects. More specific, the framework supports tests for any written function in PowerShell. To provide tests on the continuous integration server, it is recommended to clone the Pester repository from GitHub and save it into your root path of your source code. During the project we used to have the following directory structure:

```
1 Source Code Path:.
2 |-- RunPester.ps1
3 |-- TestResults.xml
4 |
5 ⎢---Pester
6 |
7 ⎢---SRI
8 |
9 ⎢---Config
10 |
11 ⎢ | audit_by_category.xml
12 |
13 ⎢ | event_log_list.xml
14 |
15 ⎢---Modules
16 |
17 | GetAndAnalyseAuditPolicies.psm1
18 | GetAndAnalyseAuditPolicies.Tests.ps1
19 | GetAndCompareLogs.psm1
20 | GetAndCompareLogs.Tests.ps1
21 | itextsharp.dll
22 | Visualize.psm1
23 |
24 ⎢---TestFiles
```

In addition to place the Pester repository in the root path, you have to provide a `RunPester.ps1`-File to invoke the tests on the continuous integration server. The `RunPester.ps1` should contain the following code snippet:

```powershell
1 Import-Module "$PSScriptRoot\Pester\Pester.psm1"
2 Invoke-Pester -Script "$PSScriptRoot\SRI\Modules" -OutputFormat NUnitXml -OutputFile "$PSScriptRoot\TestResults.xml" -PassThru -ExcludeTag Incomplete
```

This code snippet defines the starting point for Pester. Moreover, with the parameter combination `-OutputFormat NUnitXml -OutputFile <PATH> -PassThru -ExcludeTag Incomplete` Pester generates a `TestResults.xml` which is supported by "Microsoft Azure DevOps". This file is then used by the continuous integration server to represent the test results in a nice view for each build.
General Information

1.1 System Overview
The "System Readiness Inspector" is a PowerShell tool that helps you to check the readiness of a system to detect advanced persistent threats and lateral movement. After the SRI ran successfully it generates a PDF-Document showing wrong or missing configurations. The SRI was developed during a student research project by the two bachelor of science in computer science students, Claudio Mattes and Lukas Kellenberger.

The SRI has four different modes: Online, Offline, GroupPolicy, AllGroupPolicies. The online mode is limited to the current system and thus determines readiness. The offline mode is used to be able to make a statement about any system by means of exports. The GroupPolicy mode is limited to a specific Group Policy, which is checked for its audit settings. In the AllGroupPolicies mode, all group policies of the current domain are examined.

1.2 Organization of the Manual
The user manual consists of five parts:

- **General Information:**
  The General Information section explains the tool and the purpose for which it is intended.

- **System Requirements:**
  The System Requirements section provides a general overview of the system requirements. Which operating systems are supported, what software must be pre-installed, and what authorizations the user must have.

- **Getting Started:**
  The Getting Started section explains how to obtain and install the SRI on your device.

- **Using SRI:**
  The Use SRI section provides a detailed description of the system functions.
System Requirements

2.1 Operating System
The SRI runs on all Windows 10 Pro operated systems as well as on all servers with the operating system Windows Server 2016.

2.2 User Authorizations
To run the SRI successfully the user needs administrator rights.

2.3 Pre-Installed Software
To enable the SRI to read the Resultant Set of Policies, the Remote Server Administration Tools must be installed on the device.

This Microsoft tool can be downloaded here:

It is easy to install with just a few clicks.
Getting Started

3.1 Download
You can find the latest version of the SRI in this GitHub repository:

https://github.com/clma91/studythesis/

You download a ZIP folder, which has to be unpacked first.

3.2 Installation
You have either downloaded SRI from the official GitHub repository or received it from another source. No further installation is required. The SRI is ready to use.
Using SRI

4.1 Starting SRI

Open Windows PowerShell as administrator:

![Image showing how to open PowerShell as administrator](image1.png)

Figure G.1: Open PowerShell as Administrator

Navigate to the path the SRI is saved:

![Image showing how to navigate in PowerShell](image2.png)

Figure G.2: Navigate to SRI
PowerShell is by default not allowed to run scripts. We have to change that to be able to run the SRI. Enter the command "PowerShell -Exec Bypass".

![Figure G.3: PowerShell Bypass](image1)

Now you can run the SRI by open the sri.ps1 file. You find more details to the different modes in the section below.

![Figure G.4: PowerShell Bypass](image2)

### 4.2 SRI modes

As described in General Information there are four different modes to run the SRI. These modes are described more precisely in this chapter. These are the four modes:

- `-Online, -Offline, -GroupPolicy and -AllGroupPolicies`

```bash
PS C:\>./sri.ps1 [-Online] [-OnlineExportPath <String>] [-CAPI2LogSize <Int32>]
PS C:\>./sri.ps1 [-GroupPolicy] [-GroupPolicyName] <String>
PS C:\>./sri.ps1 [-AllGroupPolicies]
```

**Note:** Mandatory parameters are **underlined**.
The parameters "-OnlineExportPath", "-ImportPath" and "-ExportPath" are Strings, for example:

```
"C:\Example\Path"
```

The parameters "-CAPI2LogSize" is a Integer, for example:

```
4194304
```

The parameters "-GroupPolicyName" is a String, for example:

```
"Default Domain Policy"
```

### 4.2.1 Online Mode

**-Online**

The current system which is calling the script will be checked on its readiness.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No parameter</td>
<td>The result PDF will be saved to the current path</td>
</tr>
<tr>
<td>-OnlineExportPath</td>
<td>The result PDF will be saved to this path</td>
</tr>
<tr>
<td>-CAPI2LogSize</td>
<td>Definition of the CAPI2 log size suitable for the environment. By default this value is set to 4MB as recommended from Microsoft</td>
</tr>
</tbody>
</table>

These are all possible parameter combinations for the -Online mode:

```
1. \sri.ps1 -Online
2. \sri.ps1 -Online -CAPI2LogSize 4194304
3. \sri.ps1 -Online -OnlineExportPath "C:\temp\test\targetpath"
4. \sri.ps1 -Online -OnlineExportPath "C:\temp\test\targetpath" -CAPI2LogSize 4194304
```
4.2.2 Offline Mode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ImportPath</td>
<td>Defines where the required files rsop.xml, windowslogs.csv, appandservlogs.csv remain for analysis.</td>
</tr>
<tr>
<td></td>
<td>The result PDF will be saved to the current path</td>
</tr>
<tr>
<td>-AuditPolicies</td>
<td>Checks only the audit policies.</td>
</tr>
<tr>
<td></td>
<td>The result PDF will be saved to the current path</td>
</tr>
<tr>
<td>-ImportPath</td>
<td>requires rsop.xml</td>
</tr>
<tr>
<td>-EventLogs</td>
<td>Checks only the event logs</td>
</tr>
<tr>
<td></td>
<td>The result PDF will be saved to the current path</td>
</tr>
<tr>
<td>-ImportPath</td>
<td>requires windowslogs.csv and appandservlogs.csv</td>
</tr>
<tr>
<td>-ExportPath</td>
<td>The result PDF will be saved to this path</td>
</tr>
<tr>
<td>-CAPI2LogSize</td>
<td>Definition of the CAPI2 log size suitable for the environment. By default this value is set to 4MB as recommended from Microsoft</td>
</tr>
</tbody>
</table>

*XML-Export of Resultant Set of Policy

*Export of Windows logs "System" & "Security" from EventViewer, check example_windowslogs.csv

*Export of Application and Service logs "TaskScheduler", "WindowsRemoteManagement" and "LocalSessionManager" from EventViewer, check example_appandservlogs.csv
These are all possible parameter combinations for the -Offline mode:

```
\sri.ps1 -Offline -ImportPath "C:\temp\test"
\sri.ps1 -Offline -ImportPath "C:\temp\test" -CAPI2LogSize 4194304
\sri.ps1 -Offline -ImportPath "C:\temp\test" -ExportPath "C:\temp\test\targetpath"
\sri.ps1 -Offline -ImportPath "C:\temp\test" -ExportPath "C:\temp\test\targetpath" -CAPI2LogSize 4194304
\sri.ps1 -Offline -EventLogs -ImportPath "C:\temp\test"
\sri.ps1 -Offline -EventLogs -ImportPath "C:\temp\test" -ExportPath "C:\temp\test\targetpath"
\sri.ps1 -Offline -AuditPolicies -ImportPath "C:\temp\test"
\sri.ps1 -Offline -AuditPolicies -ImportPath "C:\temp\test" -CAPI2LogSize 4194304
\sri.ps1 -Offline -AuditPolicies -ImportPath "C:\temp\test" -ExportPath "C:\temp\test\targetpath"
\sri.ps1 -Offline -AuditPolicies -ImportPath "C:\temp\test" -ExportPath "C:\temp\test\targetpath" -CAPI2LogSize 4194304
```
4.2.3 GroupPolicy Mode

-GroupPolicy

Audit policies from a specific group policy are analysed.

<table>
<thead>
<tr>
<th>PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>-GroupPolicyName</td>
</tr>
</tbody>
</table>

These is an example for the -GroupPolicy mode:

```
.sri.ps1 -GroupPolicy -GroupPolicyName "Default Domain Policy"
```

4.2.4 AllGroupPolicies Mode

-AllGroupPolicies

All audit policies from every group policy in the current domain are analysed. The result PDF will be saved to the current path.

These is an example for the -GroupPolicy mode:

```
.sri.ps1 -AllGroupPolicies
```